1.本发明涉及电解质材料技术领域,具体是指一种碱性半固态电解质膜及其制备和应用。
背景技术:
2.随着柔性电子显示屏、可植入电子设备、类皮肤型传感器、可穿戴的个人多媒体、手持设备等柔性和便携式电子器件的快速发展,轻质、微型、超薄、可弯曲、可拉伸和可穿戴的能量储存器件的发展至关重要。
3.近年来,柔性锌空气电池由于其高理论能量密度(1218wh kg-1
),低成本和环境友好性的特点,成为一种十分具有发展前景的储能器件。柔性锌空气电池一般由锌阳极、固态/半固体电解质、空气阴极和封装材料组成。其中,半固态/固态电解质起着电极之间的离子传输作用,其离子传导率、界面接触等性质将显著影响柔性锌空气电池的性能包括循环寿命,倍率特性和功率输出等。
4.聚乙烯醇基碱性聚合物电解质(pva
–
koh)由于制备简单、化学稳定性好而受到广泛关注,但是由传统pva
–
koh聚合物电解质体系组装的锌空气电池具有以下问题:
5.(1)由于pva
–
koh聚合物电解质中碱性电解液的含量较低而导致低的离子传导率;
6.(2)由于聚乙烯醇(pva)的交联结构而导致较为致密的聚合物基体从而使聚合物电解质的吸液性较差;
7.(3)由于锌空气电池的半开放结构而使空气电极一侧水分易蒸发而对聚合物电解质的保湿性提出挑战。
8.因此,具有高保湿性和高离子传导率保持性的新型聚合物电解质的开发成为突破柔性锌空气电池领域一个关键挑战的研究重点。
技术实现要素:
9.为解决上述技术问题,本发明提供了一种碱性半固态电解质膜及其制备方法,将季铵官能团化的纤维素类材料和传统的非离子型水溶性高分子混纺,随后在交联剂的催化作用下进行缩醛反应,将这种水溶性的纤维固化交联,保留了稳定的三维结构。
10.按照本发明的技术方案,所述碱性半固态电解质膜的制备方法,包括以下步骤:
11.(1)将非离子型水溶性高分子和类纤维素溶解于水中,形成前驱体;
12.(2)向所述前驱体中加入季铵盐,形成纺丝前驱体;
13.(3)将所述纺丝前驱体进行纺丝,得到纤维层;
14.(4)将所述纤维层加入到交联液中,交联反应6-24h,得到所述碱性半固态电解质膜;
15.优选的,所述纺丝前驱体中,所述非离子型水溶性高分子、类纤维素和季铵盐的质量百分比浓度均为1%-20%;
16.优选的,所述交联液为交联剂、浓硫酸和醇类的混合溶液。
17.优选的,所述醇类选自乙醇、甲醇和异丙醇中的一种或多种。
18.优选的,所述非离子型水溶性高分子选自聚乙烯醇、聚乙二醇(peg)、聚丙烯酰胺(pam)和聚丙烯酸(paa)中的一种或多种。
19.优选的,所述类纤维素选自普鲁兰多糖(pul)、甲基纤维素、羧酸纤维素和壳聚糖中的一种或多种。
20.优选的,所述步骤(1)中,溶解的温度为70-100℃。
21.优选的,所述季铵盐选自2,3-环氧丙基三甲基氯化铵、十二烷基二甲基苄基氯化铵、三-(十二烷基)甲基蚕化铵、三-(十四烷基)甲基氯化铵和四-(八烷基)蚕化铵中的一种或多种。
22.优选的,所述步骤(3)中,纺丝的条件为:温度20-40℃,湿度20%-55%,推进速度0.005-0.02ml/min,电压18-25kv。
23.优选的,所述交联剂选自戊二醛、乙二醇二缩水甘油醚和吡咯-2-羧醛中的一种或多种;
24.优选的,所述交联剂和浓硫酸的体积比为1:9-9:1;
25.优选的,所述交联剂和浓硫酸的体积之和与醇类的体积比为1:10-50。
26.优选的,所述纤维片与所述交联液的质量体积比为0.01-0.1g/ml。
27.具体的,所述碱性半固态电解质膜的制备方法,包括以下步骤:
28.(1)将非离子型水溶性高分子和类纤维素按照一定比例加入超纯水中,70-100℃油浴搅拌直至完全溶解,形成粘稠均匀的前驱体;
29.(2)随后按照一定比例像所述前驱体中加入季铵盐,在70-100℃下继续搅拌溶解,形成均一稳定的纺丝前驱体;
30.(3)将所述前驱体在温度20-40℃,湿度20%-55%,推进速度0.005-0.02ml/min,电压18-25kv的条件下进行纺丝,得到白色均一的纤维层;
31.(4)将所述纤维层裁取成固定大小的纤维片,投入到交联液中,静置交联6-24h,取出交联后的产物用乙醇多次反复清洗,静置到1-6m的碱性溶液中吸收电解液保存,得到所述碱性半固态电解质膜。
32.优选的,所述碱性溶液为氢氧化钾溶液或氢氧化钠溶液。
33.本发明的另一目的在于提供所述碱性半固态电解质膜作为柔性半固态电解质用于组装柔性锌空电池的应用。
34.本发明的上述技术方案相比现有技术具有以下优点:
35.(1)本发明制备碱性半固态电解质膜的前驱体原料中,纤维素类材料廉价简单,来源广泛,方便获得,且与单纯的聚乙烯醇的链状结构相比,交联后的聚乙烯醇纤维素类混纺材料具有更好的稳定性;
36.(2)与传统的凝胶电解质相比,本发明碱性半固态电解质膜的制备方法简单,静电纺丝得到的纤维可大规模生产合成,纤维表面处理工艺简单温和,便于工业大规模生产,并且三维纤维结构有利于传质和提供丰富的电化学反应场所,无污染且绿色环保;
37.(3)本发明碱性半固态电解质膜材料具有优异的离子电导率、吸水/保水性和耐碱稳定性和电化学稳定性,表面丰富的季铵官能团和羟基官能团能帮助提高材料的离子电导率,离子电导率达到了22.6ms cm-1
,超过了传统的凝胶pva-koh电解质;此外,丰富的氢键结
构能更好地锁住水系电解液,减少电解液的流失,在空气中暴露24h后含水率依然超过70%,可以有效保证金属空气电池反应的稳定运行;
38.(4)本发明碱性半固态电解质膜作为半固态电解质膜应用于柔性锌空电池时表现出良好的机械性能、自支撑稳定性和循环性能,电池在5ma cm-2
的电流密度下能平稳运行超过100h,展现出巨大的应用前景。
附图说明
39.为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:
40.图1是本发明实施例1制备的碱性半固态电解质膜ppqac的扫描电镜图(sem)。
41.图2是本发明对比例1制备的碱性半固态电解质膜pvac的sem图。
42.图3是本发明对比例2制备的碱性半固态电解质膜ppc的sem图。
43.图4中,图a是传统pva凝胶(pvag)、ppqac、pvac和ppc的电化学阻抗谱对比图;
44.图b是pvag、ppqac、pvac和ppc根据电化学阻抗谱计算得到的离子电导率对比图;
45.图c是pvag、ppqac、pvac和ppc的吸水性对比图;
46.图d是pvag、ppqac、pvac和ppc的保水性对比图。
47.图5是pvag、ppqac、pvac和ppc的力学测试图。
具体实施方式
48.下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
49.实施例1
50.(1)将10g聚乙烯醇,10g普鲁兰多糖加入100ml超纯水中,90℃油浴搅拌直至完全溶解,形成粘稠均匀的前驱体;
51.(2)随后加入10g的2,3-环氧丙基三甲基氯化铵,在70℃下继续搅拌溶解,形成均一稳定的纺丝前驱体;
52.(3)将得到的纺丝前驱体在25kv,0.01ml/min的推进速度下进行纺丝,得到白色均一的纤维层;
53.(4)将所述纤维层裁取成3*6cm固定大小的纤维片,投入到20ml戊二醛-浓硫酸(体积比9:1)的乙醇溶液中,静置交联12h,取出交联后的产物用乙醇多次反复清洗,静置到6m的氢氧化钾水溶液中吸收电解液保存,得到所述碱性半固态电解质膜,产物命名为ppqac。sem图如图1所示。
54.实施例2-4
55.在实施例1的基础上将聚乙烯醇替换为聚乙二醇、聚丙烯酰胺或聚丙烯酸。
56.实施例5-7
57.在实施例1的基础上将普鲁兰多糖替换为甲基纤维素、羧酸纤维素或壳聚糖。
58.实施例8-11
59.在实施例1的基础上将2,3-环氧丙基三甲基氯化铵替换为十二烷基二甲基苄基氯化铵、三-(十二烷基)甲基蚕化铵、三-(十四烷基)甲基氯化铵或四-(八烷基)蚕化铵。
60.实施例12
61.在实施例1的基础上将纺丝的条件调整为电压18kv,0.005ml/min的推进速度;交联反应的时间调整为6h。
62.实施例13-14
63.在实施例1的基础上将戊二醛替换为乙二醇二缩水甘油醚或吡咯-2-羧醛。
64.实施例15
65.在实施例1的基础上将戊二醛和浓硫酸的体积的体积比调整为1:9。
66.对比例1
67.(1)将10g聚乙烯醇加入100ml超纯水中,90℃油浴搅拌直至完全溶解,形成粘稠均匀的前驱体;
68.(2)在70℃下继续搅拌溶解,形成均一稳定的纺丝前驱体;
69.(3)将得到的纺丝前驱体在25kv,0.01ml/min的推进速度下进行纺丝,得到白色均一的纤维层;
70.(4)将所述纤维层裁取成3*6cm固定大小的纤维片,投入到20ml戊二醛-浓硫酸(体积比9:1)的乙醇溶液中,静置交联12h,取出交联后的产物用乙醇多次反复清洗,静置到6m的koh水溶液中吸收电解液保存,得到所述碱性半固态电解质膜,产物命名为pvac。sem图如图2所示。
71.对比例2
72.(1)将10g聚乙烯醇(pva),10g普鲁兰多糖(pul)加入100ml超纯水中,90℃油浴搅拌直至完全溶解,形成粘稠均匀的前驱体;
73.(2)在70℃下继续搅拌溶解,形成均一稳定的纺丝前驱体;
74.(3)将得到的纺丝前驱体在25kv,0.01ml/min的推进速度下进行纺丝,得到白色均一的纤维层;
75.(4)将所述纤维层裁取成3*6cm固定大小的纤维片,投入到20ml戊二醛-浓硫酸(体积比9:1)的乙醇溶液中,静置交联12h,取出交联后的产物用乙醇多次反复清洗,静置到6m的koh水溶液中吸收电解液保存,得到所述碱性半固态电解质膜,产物命名为ppc。sem图如图3所示。
76.对比例3
77.pvag的制备方法:取一定质量的pva加热搅拌溶解到水中,制得8%浓度的pva水溶液,随后将该溶液倒入模具中,室温下晾干,得到的凝胶膜命名为pvag。
78.其中,实施例1的ppqac表示普鲁兰多糖和聚乙烯醇水溶液经季铵盐处理后纺丝交联(cross-link)的产物;对比例1的pvac表示单纯的聚乙烯醇水溶液纺丝交联的产物;对比例2的ppc表示普鲁兰多糖和聚乙烯醇水溶液纺丝交联的产物;对比例3的pvag表示传统的pva材料直接形成的凝胶(gel)。
79.性能测定
80.(1)电化学阻抗谱(eis):给电化学系统施加一个频率不同的小振幅的交流信号,测量交流信号电压与电流的比值(此比值即为系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角φ随ω的变化,进而分析电极过程动力学、双电层和扩散等,研究电极材料、固体电解质、导电高分子以及腐蚀防护等机理,如图4中的图a所示。
81.(2)离子电导率:通过测试电解质材料的内阻、材料的厚度和截面等,经计算得到离子电导率,结果如图4中的图b所示。
82.(3)吸水性和保水性:将交联后的样品裁成2cm*2cm的形状,称重记为m1,将其浸在1m的koh电解液中,0-24h每间隔1h取出,用滤纸轻轻吸去样品表面水分再次称重,记为m2,吸水率=(m
2-m1)/m1*100%;反之则为保水率。结果如图4中的图c和图d所示。
83.(4)通过静态法测试材料的力学性能:静态法是指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,或是在试样上施加一恒定的拉伸(或压缩)应力,测定其弹性变形量,或根据应力和应变计算弹性模量。结果如图5所示。
84.图4中,图a和图b表明,本发明实施例1制备的碱性半固态电解质膜ppqac拥有最小的内阻以及最大的离子电导率,离子电导率达到了22.6ms cm-1
,远超过其他的对比例,说明季铵化处理后的纤维的离子电导率有明显提升;图c和图d表明,本发明实施例1制备的碱性半固态电解质膜ppqac拥有更好的吸水率和保水率。
85.由图5可知,本发明实施例1制备的碱性半固态电解质膜ppqac展现出更强的耐受力,需要更大的拉力才能使其发生形变,说明本发明碱性半固态电解质膜材料具有优秀的力学性能。
86.显然,上述实施例仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
技术特征:
1.一种碱性半固态电解质膜的制备方法,其特征在于,包括以下步骤:(1)将非离子型水溶性高分子和类纤维素溶解于水中,形成前驱体;(2)向所述前驱体中加入季铵盐,形成纺丝前驱体;(3)将所述纺丝前驱体进行纺丝,得到纤维层;(4)将所述纤维层加入到交联液中,交联反应6-24h,得到所述碱性半固态电解质膜;所述纺丝前驱体中,非离子型水溶性高分子、类纤维素和季铵盐的质量百分比浓度均为1%-20%;所述交联液为交联剂、浓硫酸和醇类的混合溶液。2.根据权利要求1所述的制备方法,其特征在于,所述非离子型水溶性高分子选自聚乙烯醇、聚乙二醇、聚丙烯酰胺和聚丙烯酸中的一种或多种。3.根据权利要求1所述的制备方法,其特征在于,所述类纤维素选自普鲁兰多糖、甲基纤维素、羧酸纤维素和壳聚糖中的一种或多种。4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,溶解的温度为70-100℃。5.根据权利要求1所述的制备方法,其特征在于,所述季铵盐选自2,3-环氧丙基三甲基氯化铵、十二烷基二甲基苄基氯化铵、三-(十二烷基)甲基蚕化铵、三-(十四烷基)甲基氯化铵和四-(八烷基)蚕化铵中的一种或多种。6.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,纺丝的条件为:温度20-40℃,湿度20%-55%,推进速度0.005-0.02ml/min,电压18-25kv。7.根据权利要求1所述的制备方法,其特征在于,所述交联剂选自戊二醛、乙二醇二缩水甘油醚和吡咯-2-羧醛中的一种或多种;所述交联剂和浓硫酸的体积比为1:9-9:1;所述交联剂和浓硫酸的体积之和与醇类的体积比为1:10-50。8.根据权利要求1所述的制备方法,其特征在于,所述纤维层与交联液的质量体积比为0.01-0.1g/ml。9.一种权利要求1-8中任一项所述的制备方法制得的碱性半固态电解质膜。10.一种权利要求9所述的碱性半固态电解质膜作为柔性半固态电解质用于组装柔性锌空电池的应用。
技术总结
本发明涉及电解质材料技术领域,具体涉及一种碱性半固态电解质膜及其制备和应用。制备方法包括:将非离子型水溶性高分子和类纤维素溶解于水中,形成前驱体;向所述前驱体中加入季铵盐,形成纺丝前驱体;将所述纺丝前驱体进行纺丝,得到纤维层;将所述纤维层加入到交联液中进行交联反应,得到产品。本发明制备方法简单、成本低廉、无污染且绿色环保;制得的碱性半固态电解质膜在空气中暴露24h后含水率依然超过70%;离子电导率达到22.6mS cm-1
技术研发人员:邓昭 赵晓辉 胡加鹏 彭扬 连跃彬
受保护的技术使用者:苏州大学
技术研发日:2021.11.05
技术公布日:2022/3/8