1.一种高亲锂金属与高分子的复合修饰层,特别是一种使用于锂金属电池,并同时能够避免锂枝晶产生的高亲锂金属与高分子的复合修饰层。
2.本发明所提供高亲锂金属与高分子的复合修饰层主要是使用于无阳极锂电池并且以下将以此实施例加以叙述与说明,但本发明并不仅局限于此单一应用上,其它相同或近似机理的应用都应涵盖在本发明所揭露的范围中。
背景技术:
3.锂金属电池拥有低还原电位、低密度及高能量密度的特性,是这个世纪最受关注的技术之一。然而,锂金属电池在商业上仍无法普及的关键因素在于不受控的锂金属树枝状锂晶体生长与长时间反应过程中的锂堆积而导致低循环效率的问题,特别在无阳极锂电池技术上,因锂晶核在铜箔上成长的热力学不稳定,容易有树枝状锂晶体生长造成电池快速失效,因此需要一种技术能够改善或至少提供一种替代的解决方案。
技术实现要素:
4.为了解决上述锂金属电池不受控的锂金属树枝状锂晶体生长与长时间反应过程中的锂堆积而导致低循环效率的问题,本发明提供一种高亲锂金属与高分子的复合修饰层,其附着于一电流收集器表面,并包含一亲锂性奈米粒子由一高分子所包覆形成的一复合材料;以及该电流收集器表面至少包含一金属。
5.其中,该亲锂性奈米粒子包含金、铂、钯、硅、银、铝、铋、锡、锌或铟等一种或多种组合;该高分子包含聚多巴胺、聚乙烯醇、乙烯醇乙烯共聚物、聚苯乙烯磺酸钠盐、聚(2-丙烯酰胺基-2-甲基丙磺酸)、聚丙烯酸、聚丙烯酸钠盐、聚丙烯腈、丁苯橡胶或羧甲基纤维素钠的一种或多种组合;以及该电流收集器的表面金属包含铜、银、白金、黄金、镍及不锈钢等一种或多种组合。
6.其中,该锂性金属奈米粒子与该高分子所形成的复合材料表面进一步附着一碳层。
7.其中,该碳层包含石墨烯、氧化石墨烯、碳管、软碳、硬碳、天然石墨或人工石墨的一种或多种组合。
8.其中,该亲锂性奈米粒子与该高分子所形成的复合材料表面进一步附着一人工保护层,该人工保护层包含聚偏二氟乙烯-六氟丙烯共聚物与双(三氟甲烷磺酰)亚胺锂的复合材料。
9.其中,该聚偏二氟乙烯-六氟丙烯共聚物与双(三氟甲烷磺酰)亚胺锂质量比介于5:1~5:3。
10.本发明的复合修饰层可应用于无阳极锂电池,包含液态或固态电解质。
11.通过上述说明可知,本发明具有以下优点与有益功效:
12.1.本发明所提供的较佳实施例中,主要在阳极电流收集器先涂布一层被包覆聚多
巴胺(ag@pda)的奈米银粒子,通过银粒子具有亲锂性,优先形成锂银合金降低锂晶核成长时的热力学不稳定,抑制枝晶锂的生成,此奈米银粒子通过聚多巴胺的高机械黏附力特性让奈米银粒子稳定于铜箔上。
13.2.进一步地,本发明其它更佳实施例在ag@pda层的顶部涂覆氧化石墨烯(go)的碳层,因go具高锂离子传导度、低电子导电度、与电解液稳定性以及增加整体涂布层的机械强度,可作为人工sei界面层,帮助抑制电解液分解与枝晶锂的生成。本发明集成上述多种优点,制作一种高效能、高安全性的稳定人工sei界面复合层,用于有效提高无阳极锂金属电池性能。
14.3.本发明其它更佳实施例也通过在铜箔表面施予一个人工界面层(涂层),运用不同的有机、无机材料的组合,选择对于锂离子的亲和性、反应性、以及考虑电解液的特性、界面所需的物理化学特征(例如:高离子传导特性、低电子传导特性、机械性质、化学稳定性等),解决上述锂枝晶生成的挑战。
15.4.本发明所提供的复合修饰层具有高锂离子传导度、低电子导电度、与电解液稳定性以及增加整体涂布层的机械强度,应用于无阳极锂电池中,可运用在液态或固态电解质,使锂电池的充放电表现、循环寿命等有更好、更安全的表现。
附图说明
16.本发明将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
17.图1为本发明第一较佳实施例示意图。
18.图2为本发明第二较佳实施例示意图。
19.图3为本发明第三较佳实施例示意图。
20.图4为本发明数实施例测量锂晶粒成核大小的x射线散射(saxs)图。
21.图5a、5b为本发明以交流阻抗分析各实施例的接口阻抗(rsei)与电荷移转阻抗(rct)测试。
22.图6a-6c分别为实施例1、2、3的杨氏模数分析。
23.图7a、7b为各实施例的电性分析。
24.符号说明:
25.a
ꢀꢀꢀ
电流收集器
26.l
ꢀꢀꢀ
复合修饰层
27.m
ꢀꢀꢀ
亲锂性奈米粒子
28.p
ꢀꢀꢀ
高分子
29.mpc 复合材料
30.c
ꢀꢀꢀ
碳层
31.apf 人工保护层
具体实施方式
32.为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些示例或实施例,
对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本发明应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
33.应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、组件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
34.如本发明和权利要求中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
35.本发明中使用了流程图用来说明根据本发明的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
36.《实施例1》
37.请参考图1,其为本发明所提供的一种复合修饰层l第一较佳实施例,其包含:一亲锂性奈米粒子m与一高分子p所形成的复合材料mpc,该复合材料mpc均匀分布于一电流收集器a表面。
38.其中,上述该复合修饰层l的较佳实施例于本发明中,该亲锂性奈米粒子m包含金、铂、钯、硅、银、铝、铋、锡、锌或铟等一种或多种组合;该高分子p包含聚多巴胺(polydopamine)、聚乙烯醇(polyvinyl alcohol,pva)、乙烯醇乙烯共聚物[poly(vinyl alcohol-co-ethylene),evoh]、聚苯乙烯磺酸钠盐(poly(sodium 4-styrene sulfonate)]、聚(2-丙烯酰胺基-2-甲基丙磺酸)[poly(2-acrylamido-2-methyl-1-propanesulfonic acid),polyamps]、聚丙烯酸(polyacrylic acid,paa)、聚丙烯酸钠盐[poly(sodium acrylate)]、聚丙烯腈(polyacrylonitrile,pan)、丁苯橡胶(styrene-butadiene rubber,sbr)或羧甲基纤维素钠(carboxymethyl cellulose,cmc)的一种或多种;以及该电流收集器a的至少表面包含一金属材质,包含铜、银、镍、白金、黄金及不锈钢等一种或多种组合。
[0039]
于本实施例中将以银奈米粒子与聚多巴胺形成该复合材料mpc为银奈米粒子@聚多巴胺复合材料(agnps@p),该电流收集器a则是应用于无阳极锂金属电池的铜箔。
[0040]
进一步地,该亲锂性奈米粒子m与该高分子p的复合型态较佳是该高分子p均匀地包覆或涂布于该亲锂性奈米粒子m的表面。
[0041]
该agnps@p复合材料的制备方法较佳实施例包含以下步骤。将10mg多巴胺加入20ml的tris-hcl(10mm,ph=8.5)缓冲液中,并与包含银奈米粒子胶体溶液20ml混合均匀,并在室温下磁化搅拌12小时。接着以12000rmp转速进行离心分离,再分别用乙醇与去离子水清洗3次得到该agnps@p复合材料,可以利用涂布方式将该agnps@p复合材料附着于该电流收集器a表面。
[0042]
《实施例2》
[0043]
请参考图2,本发明上述该复合修饰层l的第二较佳实施例,是于上述第一较佳实
施例的该复合材料mpc层上进一步附着一碳层c,该碳层c于本实施例中较佳是氧化石墨烯(go)层,而其它可能的材料包含石墨烯、碳管、软碳、硬碳、天然石墨或人工石墨的一种或多种组合。本实施例中该碳层c主要功用是作为人工固态电解质接口层(artificial solid electrolyte interface,asei)用以缓冲锂离子的分布情形。
[0044]
《实施例3》
[0045]
请参考图3,本发明上述该复合修饰层l的第三较佳实施例,是于上述第一较佳实施例的该复合材料mpc层上进一步附着一人工保护层apf,该人工保护层apf于本实施例中较佳包含聚偏二氟乙烯-六氟丙烯共聚物(polyvinylidene fluoride-hexafluoropropylene copolymer,pvdf-hfp)与双(三氟甲烷磺酰)亚胺锂(litfsi)所形成的复合材料,质量配比较佳介于5:1~5:3。其制造步骤较佳包含将pvdf-hfp和litfsi加入1-甲基-2-吡咯烷酮(nmp)溶剂中,以磁力搅拌器搅拌12小时得到均匀溶液,将此均匀溶液涂布于该复合材料mpc层上后以真空烘箱在80℃下干燥12-24小时。
[0046]
《实施例确效性测试》
[0047]
以下本发明将上述各实施例制作为全锂电池,例如cu|ag@pda//li或cu|ag@pda//nmc后进行确效性测试。
[0048]
请参考图4,以小角x射线散射(saxs)量测锂晶粒成核大小,于电流密度0.01ma/cm2,有银粒子的复合膜具有35nm(b)及37nm(c)的锂晶粒,无银粒子(a)具有44nm较大的锂成核晶粒,成核晶粒越小代表枝晶锂较不易生成。其中,图4的各测试样品起始成核大小为0.01ma/cm2。值得注意的是,本发明所提供的实施例1中银粒子厚度约50nm左右,复合的该高分子p后所形成的该复合修饰层l约为1微米(micro-),而本发明该复合修饰层l各实施例的厚度较佳介于1-50微米间,越薄具有更好效果。
[0049]
请参考图5a与下表1,以交流阻抗分析各实施例的接口阻抗(rsei)与电荷移转阻抗(rct),图5a为实施例1、2与比较例以充放电1个(cycles)循环后的阻抗分析,结果显示本发明各实施例皆具有锂离子导离度,而其中以实施例2最小,代表有较高的锂离子导离度。
[0050]
表1
[0051][0052]
下表2与图5b为实施例3与比较例以充放电20个循环(cycles)后的阻抗分析。结果显示本发明实施例3同样具有较高的锂离子导离度。
[0053]
表2
[0054][0055]
综合上述表1、2的不同循环次数测试下,本发明经改质后的该复合修饰层l各实施例都相较于纯铜箔的比较例有更好的电性表现,库伦效率也明显更佳。
[0056]
请参考图6a、图6b与图6c,其分别为实施例1、2、3的杨氏模数分析,实施例1的杨氏模数约为62gpa,实施例2的杨氏模数约为133gpa。
[0057]
请参考图7a与图7b,于电性分析,经过60个循环后,实施例2保有~98.6%库伦效率以及近55.7%电容量保持率。而比较例(纯铜箔)仅到达近87%库伦效率与近4%电容量保持率,代表本发明的复合修饰层确实具有可优化无阳极锂金属电池的效能。
[0058]
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有
±
20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数字并采用一般位数保留的方法。尽管本发明一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
[0059]
针对本发明引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本发明作为参考。与本发明内容不一致或产生冲突的申请历史文件除外,对本发明权利要求最广范围有限制的文件(当前或之后附加于本发明中的)也除外。需要说明的是,如果本发明附属材料中的描述、定义、和/或术语的使用与本发明所述内容有不一致或冲突的地方,以本发明的描述、定义和/或术语的使用为准。
[0060]
最后,应当理解的是,本发明中所述实施例仅用以说明本发明实施例的原则。其他的变形也可能属本发明的范围。因此,作为示例而非限制,本发明实施例的替代配置可视为与本发明的教导一致。相应地,本发明的实施例不仅限于本发明明确介绍和描述的实施例。
技术特征:
1.一种复合修饰层,其特征在于,其附着于一电流收集器表面,并包含:一亲锂性奈米粒子由一高分子所包覆形成的一复合材料;以及该电流收集器表面至少包含一金属。2.如权利要求1所述的复合修饰层,其特征在于:该亲锂性奈米粒子包含金、铂、钯、硅、银、铝、铋、锡、锌或铟等一种或多种组合;该高分子包含聚多巴胺、聚乙烯醇、乙烯醇乙烯共聚物、聚苯乙烯磺酸钠盐、聚(2-丙烯酰胺基-2-甲基丙磺酸)、聚丙烯酸、聚丙烯酸钠盐、聚丙烯腈、丁苯橡胶或羧甲基纤维素钠的一种或多种组合;以及该电流收集器的表面该金属包含铜、银、镍、白金、黄金及不锈钢等一种或多种组合。3.如权利要求1或2所述的复合修饰层,其特征在于:该亲锂性奈米粒子与该高分子所形成的复合材料表面进一步附着一碳层。4.如权利要求3所述的复合修饰层,其特征在于:该碳层包含石墨烯、氧化石墨烯、碳管、软碳、硬碳、天然石墨或人工石墨的一种或多种组合。5.如权利要求1或2所述的复合修饰层,其特征在于:该亲锂性奈米粒子与该高分子所形成的复合材料表面进一步附着一人工保护层,该人工保护层包含聚偏二氟乙烯-六氟丙烯共聚物与双(三氟甲烷磺酰)亚胺锂的复合材料。6.如权利要求5所述的复合修饰层,其特征在于:该聚偏二氟乙烯-六氟丙烯共聚物与双(三氟甲烷磺酰)亚胺锂质量比介于5:1~5:3。7.一种无阳极锂电池,其特征在于,包含如权利要求1-6项任一项所述的复合修饰层。
技术总结
一种复合修饰层,其附着于一电流收集器表面,该复合修饰层是由一高分子包覆一高亲锂奈米粒子所形成,进一步地该复合修饰层上可附着另一碳层或人工保护层成为本发明数种适用的复合修饰层;本发明通过高亲锂奈米粒子,例如奈米银粒子,优先形成锂银合金降低锂晶核成长时的热力学不稳定,抑制枝晶锂的生成,此奈米银粒子通过该高分子、碳材或人工保护层的高导离性与高机械黏附力特性让奈米银粒子稳定于铜箔上,经过多次循环测试后,具有较高的平均库伦效率与电容量保持率。库伦效率与电容量保持率。库伦效率与电容量保持率。
技术研发人员:黄炳照 苏威年 蒋仕凯 黄贞睿 杨盛强
受保护的技术使用者:黄炳照
技术研发日:2021.07.27
技术公布日:2022/3/8