一种低碳当量正火容器钢板的生产方法与流程

专利查询1月前  17



1.本发明属于冶金和热处理技术领域,具体涉及到一种低碳当量正火容器钢板的生产方法。


背景技术:

2.随着社会经济的发展,容器用钢板的需求量越来越大。大型压力容器越来越多,对钢板的焊接性能、强韧性提出更为严格的技术要求。在实际工程应用中,设计规范对材料的力学性能要求往往严于相关标准要求。较高的碳当量对焊接性能不利;降低碳当量,可提高焊接性和冲击韧性,进一步提高设备的安全性。


技术实现要素:

3.本发明的目的在于提供一种低碳当量正火容器钢板的生产方法,碳当量≤0.43%,采用综合生产工艺保证压力容器用钢板技术要求的生产方法,力学性能达到屈服强度≥355mpa,抗拉强度510~620mpa,伸长率≥22%,-20℃冲击值≥100j。
4.本发明的技术方案:一种低碳当量正火容器钢板的生产方法,钢的化学成分质量百分比为c=0.13%~0.15%、si=0.40%~0.50%、mn=1.46%~1.55%、p≤0.018%、s≤0.005%、alt=0.020%~0.050%、nb=0.040%~0.050%,v=0.040%~0.050%,ti=0.012%~0.020%,cr≤0.05%、mo≤0.03%、cu≤0.05%、ni≤0.03%,ce≤0.43%,其他为fe和必不可少的残留元素;包括如下工艺步骤:(1)转炉冶炼:控制出钢时c≥0.05%、p≤0.015%,出钢温度≥1650℃,点吹次数≤2次;(2)lf精炼:采取大渣量进行造渣,白渣保持时间控制在15min以上;(3)真空处理:在≤0.5tor的压力下精炼,保压时间≥25min;(4)浇铸:低过热度10~20℃,动态轻压下5%~8%;(5)加热:加热炉炉膛温度≤1200℃,均热温度1150~1180℃,均热时间40~80min;(6)轧制:采用tmcp方式轧制,一阶段开轧温度1000~1150℃,终轧温度>950℃,单道次压下量40~50mm,保证末三道次压下率≥18%;二阶段开轧温度<900℃,轧制中间坯厚度≥2.0倍成品厚度,终轧温度≤840℃,返红温度660~700℃;(7)热处理:采用正火工艺,正火温度880
±
10℃,在炉时间1.8~2.2min/mm,空冷至室温;(8)模拟焊后热处理:610
±
10℃,保温时间7~9h,入炉温度不高于400℃,温度高于400℃时升降温速度≤55℃/h。
5.其中:ce=c+mn/6+(cr+mo+v)/5+(ni+cu)/15)发明原理:c是钢中基础的提高强度的元素,但c含量高不利于钢的焊接性能和韧性,因此c含量控制在一个合理范围内可以保证钢的强度和韧性。si是固溶强化元素,对提高钢板的强度有利,且不提高碳当量。mn是固溶强化元素,对提高钢板的强度和韧性均有
利。nb在钢中主要通过与c、n形成微细的碳氮化物提高钢材的强度和韧性,在控轧微合金钢中,nb元素细化晶粒尺寸的效果和延缓奥氏体再结晶的能力是最突出的,微量nb对奥氏体再结晶有强烈的抑制作用。由于nb在钢种起碳化物析出硬化的作用,含极微量nb(0.03%)就能显著细化钢材晶粒并提高钢的常温抗拉强度和屈服强度。钒和铁形成连续的固溶体,强烈地缩小奥氏体相区,钒和碳、氮、氧都有极强的亲和力,在钢中主要以碳化物或氧化物、氮化物的形态存在,通过控制奥氏体化温度来改变钒在奥氏体中的含量和未溶碳化物的数量以及钢的实际晶粒度,可以调节钢的淬透性,由于钒形成稳定难溶的碳化物,使钢在较高温度时仍保持细晶粒组织,大大减低钢的过热敏感性。含p高对焊接性能不利,且使钢具有一定的冷脆性,在本钢种中属于有害元素,应尽量控制为低含量。s易形成mns类夹杂物,使钢具有一定的热脆性,在本钢种中属于有害元素,应控制得尽量低。nb是强碳化物形成元素,也是细化晶粒的重要元素,尤其对奥氏体晶粒的细化和再结晶组织的细化起到一定作用。
6.本发明的有益效果:通过连铸坯生产,保证坯料的内部质量,选用仅添加nb、v、ti合金的低成本化学成分设计,lf+vd工艺保证钢质的洁净度,各类夹杂物级别总和不超过2.0;通过控轧+正火处理使钢的晶粒度达到8.0级及以上。通过上述技术措施的有效实施,成功地生产出了一种低碳当量正火容器钢板;生产的钢板的厚度为12~65mm,屈服强度≥355mpa,抗拉强度在510~620mpa,伸长率≥22%,-20℃冲击值≥100j。
附图说明
7.图1为实施例1制备的钢板1/4厚度位置金相组织图(500倍),晶粒度9.0~10级。
8.图2为实施例2制备的钢板1/4厚度位置金相组织图(500倍),晶粒度9.0级。
9.图3为实施例3制备的钢板1/4厚度位置金相组织图(500倍),晶粒度8.0级。
具体实施方式
10.实施例1炼钢工艺实施过程:转炉出钢c=0.09%,p=0.009%。lf精炼白渣保持时间18min,出站s=0.0032%,vd真空度0.48tor,保持时间15min,破空后喂入纯ca线250米处理,软吹氩时间15min。连铸浇注260mm厚度铸坯,连铸中间包钢水过热度10~14℃,连铸动态轻压下量16mm,钢的熔炼化学成分如表1所示。
11.轧钢工艺实施过程:出钢温度1170℃,第一阶段开轧温度1090℃,最后三道次压下率分别为18%,22%,24%,终轧温度1000℃,轧制中间坯厚度75mm。第二阶段开轧温度900℃,终轧温度约830℃,返红温度680℃,轧制成品厚度12mm。
12.热处理工艺实施过程:钢板从室温加热至880℃,在炉时间25min,然后空冷至室温;最后得到所述钢板,其非金属夹杂物检测结果如表2所示,其性能如表3所示。
13.模拟焊后热处理:610
±
10℃,保温时间8h,入炉温度不高于400℃,温度高于400℃时升降温速度≤55℃/h。
14.实施例2炼钢工艺实施过程:转炉出钢c=0.08%,p=0.011%。lf精炼白渣保持时间18min,出站s=0.0030%,vd真空度0.48tor,保持时间15min,破空后喂入纯ca线250米处理,软吹氩时间16min。连铸浇注300mm厚度铸坯,连铸中间包钢水过热度10~14℃,连铸动态轻压下量
18mm,钢的熔炼化学成分如表1所示。
15.轧钢工艺实施过程:出钢温度1170℃,第一阶段开轧温度1070℃,最后三道次压下率分别为18%,20%,22%,终轧温度1000℃,轧制中间坯厚度120mm。第二阶段开轧温度860℃,终轧温度约820℃,返红温度680℃,轧制成品厚度48mm。
16.热处理工艺实施过程:钢板从室温加热至880℃,在炉时间96min,然后空冷至室温;最后得到所述钢板,其非金属夹杂物检测结果如表2所示,其性能如表3所示。
17.模拟焊后热处理:610
±
10℃,保温时间8h,入炉温度不高于400℃,温度高于400℃时升降温速度≤55℃/h。
18.实施例3:炼钢工艺实施过程:转炉出钢c=0.07%,p=0.010%。lf精炼白渣保持时间16min,出站s=0.0027%,vd真空度0.50tor,保持时间12min,破空后喂入纯ca线250米处理,软吹氩时间16min。连铸浇注300mm厚度铸坯,连铸中间包钢水过热度12~15℃,连铸动态轻压下压下量18mm,钢的熔炼化学成分如表1所示。
19.轧钢工艺实施过程:出钢温度1165℃,第一阶段开轧温度1090℃,最后三道次压下率分别为18%,19%,21%,终轧温度1010℃,轧制中间坯厚度140mm。第二阶段开轧温度865℃,终轧温度约815℃,轧制成品厚度65mm。
20.热处理工艺实施过程:钢板从室温加热至880℃,在炉时间140min,然后空冷至室温;最后得到所述钢板,其非金属夹杂物检测结果如表2所示,其性能如表3所示。
21.模拟焊后热处理:610
±
10℃,保温时间8h,入炉温度不高于400℃,温度高于400℃时升降温速度≤55℃/h。
22.表1 实施例化学成分(%)。
23.表2 实施例钢的非金属夹杂物检测结果。
24.表3 实施例力学性能检测结果

25.使用本发明方法试生产的产品表面质量优良,外检合格率100%,探伤一级合格率100%,性能合格率100%。
26.表1所示:各实施例碳当量ce皆小于0.43%。
27.表2所示:各实施例的a类、b类、c类、d类非金属夹杂物皆小于1.0级。
28.表3所示:各实施例拉伸rp0.2≥400mpa,rm=550~570mpa,a50≥26%。其中屈服富余量在55mpa以上,抗拉富余量在40mpa以上,伸长率富余量在4%以上,-20℃冲击富余量在50j以上,晶粒度在8.0级以上,钢板性能均匀。

技术特征:
1.一种低碳当量正火容器钢板的生产方法,其特征在于:钢的化学成分质量百分比为c=0.13%~0.15%、si=0.40%~0.50%、mn=1.46%~1.55%、p≤0.018%、s≤0.005%、alt=0.020%~0.050%、nb=0.040%~0.050%,v=0.040%~0.050%,ti=0.012%~0.020%,cr≤0.05%、mo≤0.03%、cu≤0.05%、ni≤0.03%,ce≤0.43%,其他为fe和必不可少的残留元素;包括如下工艺步骤:(1)转炉冶炼:控制出钢时c≥0.05%、p≤0.015%,出钢温度≥1650℃,点吹次数≤2次;(2)lf精炼:采取大渣量进行造渣,白渣保持时间控制在15min以上;(3)真空处理:在≤0.5tor的压力下精炼,保压时间≥25min;(4)浇铸:低过热度10~20℃,动态轻压下5%~8%;(5)加热:加热炉炉膛温度≤1200℃,均热温度1150~1180℃,均热时间40~80min;(6)轧制:采用tmcp方式轧制,一阶段开轧温度1000~1150℃,终轧温度>950℃,单道次压下量40~50mm,保证末三道次压下率≥18%;二阶段开轧温度<900℃,轧制中间坯厚度≥2.0倍成品厚度,终轧温度≤840℃,返红温度660~700℃;(7)热处理:采用正火工艺,正火温度880
±
10℃,在炉时间1.8~2.2min/mm,空冷至室温;(8)模拟焊后热处理:610
±
10℃,保温时间7~9h,入炉温度不高于400℃,温度高于400℃时升降温速度≤55℃/h。

技术总结
本发明公开了一种低碳当量正火容器钢板的生产方法,钢的化学成分质量百分比为C=0.13%~0.15%、Si=0.40%~0.50%、Mn=1.46%~1.55%、P≤0.018%、S≤0.005%、AlT=0.020%~0.050%、Nb=0.040%~0.050%,V=0.040%~0.050%,Ti=0.012%~0.020%,Cr≤0.05%、Mo≤0.03%、Cu≤0.05%、Ni≤0.03%,其他为Fe和必不可少的残留元素,CE≤0.43%(CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15);包括如下工艺步骤:转炉冶炼


技术研发人员:龙安辉 周文浩 罗登 张计谋 张勇伟 汪后明 徐琛 刘立彪 谭小斌
受保护的技术使用者:湖南华菱湘潭钢铁有限公司
技术研发日:2021.11.26
技术公布日:2022/3/8

最新回复(0)