1.本发明属于紫外线防护领域,更具体地说,涉及一种紫外线吸收剂及其组合物与应用,其应用可以是采用上述紫外线吸收剂或者组合物配制化妆品。
背景技术:
2.2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯(dhhb,diethylamino hydroxybenzoyl hexyl benzoate)是一种较为典型且常用的油溶性有机紫外线吸收剂,油溶温度不高于50℃,防晒波段在320~400nm,特别是作为吸收近紫外线的uva吸收剂,可以通过将紫外线的能量化学性地吸收后转换为热能,防止紫外线渗透,进而有效延缓例如塑料、橡胶等高分子材质的产品在使用过程中的光老化、降解现象,作为防晒霜等化妆品的添加剂使用时,可以有效防止皮肤遭受紫外线影响。
3.以dhhb在化妆品中的使用(中国、欧盟和澳大利亚,允许使用的最大浓度为10%)为例,传统防晒化妆品制备工艺,针对常规的o/w和w/o体系的防晒霜,油相和水相通常分开单独处理,通常将如dhhb一类的紫外吸收剂溶于油相使用。以w/o体系的防晒霜的制作为例,具体将油相原料(含dhhb)投入乳化锅,搅拌升温至80-85℃,确保所有原料完全溶解或分散均匀,保温10分钟。水相原料投入水相锅,搅拌升温至80-85℃,确保所有原料完全溶解或分散均匀,保温10分钟。开启乳化锅的真空和搅拌,将水相原料按照一定的速率抽入乳化锅(即油相组份)均质,均质完成后,混合搅拌降温至45℃左右,将活性物、挥发性成分、香精和防腐剂之类的加入到乳化锅,搅拌(均质)均匀。报检合格后出料灌装。已知的例如,在专利文献1中,将油质物质引入混合容器中,并优选在85-95℃下搅入uv过滤剂。或者又例如在专利文献2中,制备油相体系时,将二乙基己基丁酰胺基三嗪酮、dhhb和双-乙基己氧苯酚甲氧苯基三嗪混合并加入油相溶剂,在80-85℃下溶解,得到油相混合液。
4.早先的dhhb在合成中以结晶形式从溶液制得的粉色粗产物先通过色谱法提纯,然后通过蒸馏脱除所存在的溶剂,最后,清洁的最终产品作为熔体装瓶并销售,且后期的使用过程中,必须将整个包装加热到比2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯的熔点更高的温度,方能从包装中取出液体产品。随着使用工艺的发展,瓶装dhhb的使用弊端逐渐显现。基于需求出现了更为方便的dhhb颗粒的新的结晶制备方法,能够直接制备得到粒径为毫米级别的颗粒状的dhhb,且众所周知道,典型的油溶性有机紫外线吸收剂,油溶温度不高于50℃,所以一般生产者不需过分考虑粒径会对dhhb产生何种不利的影响。
5.如上述传统方法,预先分别加热油相和水相,然后将二者混合搅拌冷却至室温。加热油相和水相至70℃或以上需要耗费大量的时间或能耗,同时冷却过程则需要更长的时间或利用辅助手段,例如水冷等,使其快速冷却。不仅如此,香精和不稳定的组份在工艺中的添加时机极为受限制。化妆品公司不仅要在原料、运输和包装方面,而且也要在产品工艺上考虑如何降低能源消耗和减少碳排放。基于此,目前通常使用低能乳化法(lee,low-energy emulsification)进行产品加工。例如在专利文献1所谓的冷方法中,即在室温20-25℃下进行,将溶剂和任选常规其它辅助物质转化成防晒最终配制剂。
6.但实际生产中,上述的低能乳化法却受到了一定限制,原因是新结晶工艺制备的颗粒状dhhb使用过程中会对工艺加工产生限制,最典型的问题之一是由于温度的降低或浓度的增加会加倍延长dhhb的油溶时间;问题之二是影响整个生产工艺的稳定性和节奏性,若生产过程受过多因素制约,易产生波动,会严重影响生产工艺自身的稳定性,严重影响生产节奏的稳定性,进而影响产品质量。
7.专利文献1:cn105358221b、公开日2019-08-23、包含大量uv稳定剂的试剂;
8.专利文献2:cn109908020a、公开日2019-06-21、一种防晒组合物、其制备方法及其应用。
技术实现要素:
9.1.要解决的问题
10.本发明目的之一是为了提供一种既适合上述传统方法又适合低温(室温20-25℃)加工方法的紫外线吸收剂或基于其的组合物;
11.本发明的目的之二是为了解决现有紫外线吸收剂或基于其的组合物,在应用于上述传统工艺及低温(室温20-25℃)加工工艺时,会对生产工艺自身的稳定性、生产节奏的稳定性产生严重不利影响的问题;所述紫外线吸收剂具有低于100μm的最大粒径。
12.2.技术方案
13.为了解决上述问题,本发明提供一种紫外线吸收剂,所述紫外线吸收剂为2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯,具体结构式如下:
[0014][0015]
所述紫外线吸收剂具有低于100μm的中值粒径d
(0.5)
;
[0016]
所述紫外线吸收剂的最大粒度d
(0.9)
在50~100μm的范围内;同时
[0017]
所述紫外线吸收剂的最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值的范围为30~100μm。
[0018]
在此需要说明的是,申请人通过实验发现,当紫外线吸收剂的平均粒径低于100μm时,其溶解速率与溶解时间的存在一急剧下降的区间段。若将颗粒破碎至纳米级或亚微米级,不仅需要提高制备工艺的精度,增加研磨成本和能耗,且由于纳米颗粒与纳米颗粒之间的微作用力,使其在分散过程中互相吸引,进一步在分散介质中形成大的颗粒团,反而存在溶解速率降低的可能性;
[0019]
在范围方面,所述最大粒度d
(0.9)
的数值大小可以为取自以下任一组数值范围内的任一数值:50~100μm、50~90μm、50~80μm、50~70μm、50~60μm、60~100μm、60~90μm、60~80μm、60~70μm、70~100μm、70~90μm、70~80μm、80~100μm、80~90μm、90~100μm;所述
最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值的数值大小可以为取自以下任一组数值范围内的任一数值:30~100μm、30~90μm、30~80μm、30~70μm、30~60μm、30~50μm、30~40μm、40~100μm、40~90μm、40~80μm、40~70μm、40~60μm、40~50μm、50~100μm、50~90μm、50~80μm、50~70μm、50~60μm、60~100μm、60~90μm、60~80μm、60~70μm、70~100μm、70~90μm、70~80μm、80~100μm、80~90μm、90~100μm。
[0020]
进一步地,所述紫外线吸收剂的最小粒度d
(0.1)
在5~15μm的范围内。在范围方面,所述最小粒度d
(0.1)
的数值大小可以为取自以下任一组数值范围内的任一数值:5~15μm、5~12μm、5~10μm、5~8μm、5~6μm、7~15μm、7~12μm、7~10μm、7~8μm、9~15μm、9~12μm、9~10μm、10~15μm、10~12μm、12~15μm、14~15μm。
[0021]
进一步地,所述紫外线吸收剂的中值粒径d
(0.5)
在20~40μm的范围内。在范围方面,所述中值粒径d
(0.5)
的数值大小可以为取自以下任一组数值范围内的任一数值:20~40μm、20~35μm、20~30μm、20~25μm、25~40μm、25~35μm、25~30μm、30~40μm、30~35μm、35~40μm。
[0022]
进一步地,所述紫外线吸收剂具有通过仪器测定的不高于3的有效径距。所述有效径距的数值大小可以为取自以下任一组数值范围内的任一数值:1~3、1~2.5、1~2、1~1.5、1.5~3、1.5~2.5、1.5~2、2~3、2~2.5、2.3~3。
[0023]
进一步地,所述紫外线吸收剂具有通过仪器测定的范围为0.5~1.5的一致性。所述一致性的数值大小可以为取自以下任一组数值范围内的任一数值:0.5~1.5、0.5~1.2、0.5~1、0.5~0.8、0.5~0.6、0.7~1.5、0.7~1.2、0.7~1、0.7~0.8、1~1.5、1~1.2。
[0024]
进一步地,所述紫外线吸收剂的最大粒度d
(0.9)
在50~90μm的范围内;同时
[0025]
所述紫外线吸收剂的最小粒度d
(0.1)
在5~15μm的范围内;及
[0026]
所述紫外线吸收剂的中值粒径d
(0.5)
在20~40μm的范围内;及
[0027]
所述紫外线吸收剂具有通过仪器测定的不高于1的一致性。
[0028]
进一步地,所述紫外线吸收剂的粒径分布满足以下要求:
[0029][0030]
其中,
[0031]
α
d5
为5μm粒径颗粒分布系数;
[0032]vd5
为颗粒群中粒度为5μm以下的颗粒与所述颗粒群的体积比,%;
[0033]vd100
为颗粒群中粒度为100μm以下的颗粒与所述颗粒群的体积比,%;
[0034]
所述颗粒群的小粒径颗粒分布系数满足α
d5
≤0.2。
[0035]
进一步地,所述紫外线吸收剂的粒径分布满足以下要求:
[0036][0037]
其中,
[0038]
α
d10
为10μm颗粒分布系数;
[0039]vd10
为紫外线吸收剂中粒度为10μm以下的颗粒与所述颗粒的总体积的比,%;
[0040]vd100
为紫外线吸收剂中粒度为100μm以下的颗粒与所述颗粒的总体积的比,%;
[0041]
所述紫外线吸收剂的小粒径颗粒分布系数满足α
d10
≤0.2。在此需要说明的是,申
请人惊讶的发现,当紫外线吸收剂中夹带过多小颗粒甚至细粉时,小颗粒将填充在大颗粒的空隙间,会增大颗粒间的接触点数,促进结块。但是,若将紫外线吸收剂中的小颗粒的体积控制在一定范围内,控制小大粒径与小粒径间的差值,尽管仍然会存在结块现象,但相对于现有技术,其结块程度显著下降。不仅如此,控制小大粒径与小粒径间的差值,紫外线吸收剂的结块松散程度较高,当本发明的产品投入工艺使用时,申请人发现,产品由包装倾入容器中时通过碰撞或简单机械搅拌即可快速分散,无需额外进行加热或其他辅助处理,节省功能能耗,降低工艺碳排放;同时,当本发明的紫外线吸收剂通常溶解于有机相中进行再加工时,可能是由于吸收颗粒中具有一定量的小粒径颗粒,与有机相之间更容易产生液桥力,在一定程度上增大界面间粘附力,使得吸收颗粒更容易、更快速地分布于有机相中。不仅如此,小粒径的吸收颗粒本身的溶解速度大于大粒径吸收颗粒,进一步加快了吸收颗粒的溶解进程。
[0042]
值得进一步说明的是,在搅拌过程中,原则上可以使用任何类型的搅拌器,例如磁力搅拌芯、锚式搅拌器、螺旋浆搅拌器、斜片搅拌器或圆盘搅拌器。相对于原料投入体积而言的搅拌器尺寸不是决定性的。已经知道可以通过提高搅拌器速度来加快溶解速率,即搅拌器转数/分钟。本发明中,搅拌器以100-600rpm/min,优选200-500rpm/min,最优250-350rpm/min搅拌。
[0043]
进一步地,所述紫外线吸收剂的小粒径颗粒分布系数满足α
d10
≤0.15。
[0044]
进一步地,所述紫外线吸收剂的小粒径颗粒分布系数满足0.05≤α
d10
≤0.15;且所述紫外线吸收剂的小粒径颗粒分布系数的数值大小可以为取自以下任一组数值范围内的任一数值:0.05~0.15、0.05~0.12、0.05~0.1、0.05~0.08、0.05~0.06、0.07~0.15、0.07~0.12、0.07~0.1、0.09~0.15、0.09~0.12、0.09~0.1、0.11~0.15、0.11~0.12、0.12~0.15;优选所述小粒径颗粒分布系数满足0.07≤α
d10
≤0.12。值得说明的是,一定含量的小粒径颗粒分散于大粒径颗粒的缝隙中,使紫外线吸收颗粒互相撞击和嵌合,达到充分解聚分散的效果,实现均匀混合的效果。
[0045]
进一步地,所述紫外线吸收剂的v
d100
≥70%;优选≥85%,进一步优选≥95%。
[0046]
进一步地,在加工条件下,所述紫外线吸收剂溶于溶剂的时间不高于30分钟;
[0047]
所述加工条件具体如下:
[0048]
溶剂:己二酸二丁酯;
[0049]
添加浓度:3~20wt%;
[0050]
温度:20~30℃;
[0051]
搅拌速度:150
±
5r/min;
[0052]
所述紫外线吸收剂溶于溶剂的指标为溶剂中固含量低于0.5%。
[0053]
进一步地,所述紫外线吸收剂溶于溶剂的时间不高于25分钟。
[0054]
一种具有紫外线吸收作用的组合物,包括:紫外线吸收剂、分散剂、成膜剂、抗氧化剂及润滑剂;其中,所述紫外线吸收剂包括以上任一所述的紫外线吸收剂;
[0055]
所述分散剂、成膜剂、抗氧化剂及润滑剂中至少一项在不低于20℃的条件下为油相。
[0056]
进一步地,所述的具有紫外线吸收作用的组合物,包括:以上任意一项所述的紫外线吸收颗粒2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯、碳酸二辛酯、己二酸
二丁酯、辛酸/癸酸甘油三酯、生育酚乙酸酯。
[0057]
一种化妆品,其包括上述的紫外线吸收剂;或者其包括上述的的组合物作为原料。本发明所定义的化妆品是一个广义的定义,“化妆品”包含且不限于美白剂、防晒霜、防晒剂等。
[0058]
一种化妆品配制工艺,其特征在于:使用以上任意一项所述的紫外线吸收剂或任一所述的组合物作为原料,且将所述原料溶于油相时:
[0059]
温度不高于50℃;优选为40~50℃;
[0060]
添加浓度不高于20wt%;优选为3~20wt%。
[0061]
本发明还提供上述的一种紫外线吸收颗粒作为化妆品防晒组分的应用,或作为织物表面处理的防紫外线添加剂组分的应用,或作为高分子材料的防紫外线添加剂组分的应用,制备得到的终产品,紫外吸收覆盖率高,紫外吸收效果好。
[0062]
此外,由于不同消费的皮肤特性、敏感性和吸收性能差异较大,因此消费者对防晒化妆品的需求也提出了更高的要求,不同群体的消费者往往需要适应于自身皮肤特征的差异化产品。随着消费者需求的差异化,消费者对化妆品的产品种类、产品类型和产品特性的需求也越来越多元化,势必使得企业需要生产或者加工不同种类、类型或者特性的防晒化妆品,大大增加了化妆品企业的产品的生产、加工的复杂程度,例如,需要频繁的调整产品的生产种类或者类型;与此同时,在产品种类需求逐渐增加的同时,消费者也越来越重视化妆品的质量,尤其是重视同类型、同种类化妆品性能的均一性。但是,由于化妆品的生产加工具有生产流程长、生产加工复杂、操作单元多等特点,化妆品生产一直迫切的想解决该问题,但是一直未解决;而且相应的技术人员还在不断的尝试改善加工环节的方法或者设备,以解决上述问题。申请人紫外线吸收颗粒改进的过程中,进一步令人惊讶的发现,本发明的紫外线吸收颗粒可以大大提升了生产工艺的稳定性,能够很好的保持生产节奏的节拍,在生产不同型号、不同浓度的产品时,即使在不同种类、型号产品进行交替生产时,仍然可以保持生产工艺的稳定性,进而使得生产工艺具备相应的稳定性,保持生产节拍的连续性,避免生产稳定性的变化影响产品质量的稳定性。
附图说明
[0063]
图1为实施例1中dhhb紫外线吸收剂的粒度分布曲线;
[0064]
图2为实施例2中dhhb紫外线吸收剂的粒度分布曲线;
[0065]
图3为实施例3中dhhb紫外线吸收剂的粒度分布曲线;
[0066]
图4为实施例4中dhhb紫外线吸收剂的粒度分布曲线;
[0067]
图5为实施例5中dhhb紫外线吸收剂的粒度分布曲线;
[0068]
图6为实施例6中dhhb紫外线吸收剂的粒度分布曲线;
[0069]
图7为实施例1中样品的冷溶实验结果照片(不足5min);
[0070]
图8为对比例1中样品的冷溶实验结果照片(5min);
[0071]
图9为对比例1中样品的冷溶实验结果照片(45min);
[0072]
图10为对比例1中样品的冷溶实验结果照片(105min);
[0073]
图中箭头指向未溶的dhhb样品。
具体实施方式
[0074]
除非另有定义,在本发明中,所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
[0075]
在本发明中,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
[0076]
如在此使用的术语“约”用于提供与给定术语、度量或值相关联的灵活性和不精确性。本领域技术人员可以容易地确定具体变量的灵活性程度。更具体地,尽管在此已经描述了本发明的示例性实施例,但是本发明并不局限于这些实施例,而是包括本领域技术人员根据前面的详细描述可认识到的经过修改、省略、例如各个实施例之间的组合、适应性改变和/或替换的任何和全部实施例。权利要求中的限定可根据权利要求中使用的语言而进行广泛的解释,且不限于在前述详细描述中或在实施该申请期间描述的示例,这些示例应被认为是非排他性的。在任何方法或过程权利要求中列举的任何步骤可以以任何顺序执行并且不限于权利要求中提出的顺序。因此,本发明的范围应当仅由所附权利要求及其合法等同物来确定,而不是由上文给出的说明和示例来确定。
[0077]
除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。质量、浓度、温度、时间、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,1-50的范围应理解为包括选自1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50的任何数字、数字的组合、或子范围、以及所有介于上述整数之间的小数值,例如,1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8和1.9。关于子范围,具体考虑从范围内的任意端点开始延伸的“嵌套的子范围”。例如,示例性范围1-50的嵌套子范围可以包括一个方向上的1-10、1-20、1-30和1-40,或在另一方向上的50-40、50-30、50-20和50-10。
[0078]
如在此使用的术语“中值粒径d
(0.5)”,其中“中值粒径”也称为“中位粒径”,“d
(0.5)”也可以表示为“dv50”或者“d50”,表示一个样品的粒度累积分布百分数(也可以称之为粒度累计分布百分数)达到50%时所对应的粒径,进一步的,其物理意义为粒径大于它的颗粒占50%,小于它的颗粒也占50%。
[0079]
如在此使用的术语“最大粒径d
(0.9)”,其中“d
(0.9)”也可以表示为“dv90”或者“d90”,表示一个样品的粒度累积分布百分数达到90%时所对应的粒径,其物理意义为粒径大于它的颗粒占10%,小于它的颗粒占90%。
[0080]
如在此使用的术语“最小粒径d
(0.1)”,其中“d
(0.1)”也可以表示为“dv10”或者“d10”,表示一个样品的粒度累积分布百分数达到10%时所对应的粒径,其物理意义为粒径大于它的颗粒占90%,小于它的颗粒占10%。
[0081]
如在此使用的“最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值”,也可以称之为“有效粒径宽度”或者“粒径宽度”或者“粒径分布宽度”或者“有效粒度宽度”或者“粒度宽度”或者“粒度分布宽度”,具体表示一个样品的粒度累积分布百分数达到某一数值d
(0.1)
时所对应的
粒径与一个样品的粒度累积分布百分数达到另一数值d
(0.9)
时所对应的粒径之间的绝对差值。
[0082]
|粒径测试|
[0083]
本文所述紫外线吸收剂的粒度分布及其特征,比如最小粒度d
(0.1)
、d
(0.9)
、一致性等,均利用激光衍射法进行测定,其测定条件如下,
[0084]
粒度分析仪:马尔文ms2000激光粒度仪;
[0085]
进样器名:hydro 2000mu(a);
[0086]
分析模式:通用;
[0087]
粒径范围:0.02-2000μm;
[0088]
分散剂名称:水。
[0089]
实施例1
[0090]
利用激光衍射法对本实施例中的紫外线吸收剂进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表1所示:
[0091]
表1实施例1中的粒度测定数据
[0092][0093]
测定结果显示,本实施例的紫外线吸收剂具有下表2的粒径分布特征,具体分布曲线参见附图1。
[0094]
表2实施例1紫外线吸收剂粒径分布表
[0095][0096][0097]
本实施例中的紫外线吸收剂的α
d5
=0.0160,α
d10
=0.111,d[3,2]与d[4,3]的差值为11.727μm。
[0098]
实施例2
[0099]
利用激光衍射法对本实施例中的紫外线吸收剂进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表3所示:
[0100]
表3实施例2中的粒度测定数据
[0101][0102]
测定结果显示,本实施例的紫外线吸收剂具有下表4的粒径分布特征,具体分布曲线参见附图2。
[0103]
表4实施例2紫外线吸收剂粒径分布表
[0104][0105][0106]
本实施例中的紫外线吸收剂的α
d5
=0.006,α
d10
=0.104,d[3,2]与d[4,3]的差值为8.865μm。
[0107]
实施例3
[0108]
利用激光衍射法对本实施例中的紫外线吸收剂进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表5所示:
[0109]
表5实施例3中的粒度测定数据
[0110][0111]
测定结果显示,本实施例的紫外线吸收剂具有下表6的粒径分布特征,具体分布曲线参见附图3。
[0112]
表6实施例3紫外线吸收剂粒径分布表
[0113][0114]
本实施例中的紫外线吸收剂的α
d5
=0.019,α
d10
=0.107,d[3,2]与d[4,3]的差值为17.543μm。
[0115]
实施例4
[0116]
利用激光衍射法对本实施例中的紫外线吸收剂进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表7所示:
[0117]
表7实施例4中的粒度测定数据
[0118][0119]
测定结果显示,本实施例的紫外线吸收剂具有下表8的粒径分布特征,具体分布曲线参见附图4。
[0120]
表8实施例4紫外线吸收剂粒径分布表
[0121][0122]
本实施例中的紫外线吸收剂的α
d5
=0.002,α
d10
=0.074,d[3,2]与d[4,3]的差值为11.215μm。
[0123]
实施例5
[0124]
利用激光衍射法对本实施例中的紫外线吸收剂进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表9所示:
[0125]
表9实施例5中的粒度测定数据
[0126][0127]
测定结果显示,本实施例的紫外线吸收剂具有下表10的粒径分布特征,具体分布曲线参见附图5。
[0128]
表10实施例5紫外线吸收剂粒径分布表
[0129][0130]
本实施例中的紫外线吸收剂的α
d5
=0.037,α
d10
=0.095,d[3,2]与d[4,3]的差值为21.881μm。
[0131]
对比例1
[0132]
在本对比例中,利用basf公司生产的,商品名为uvinul a plus的dhhb产品作为样品。利用激光衍射法对本对比例中的样品进行测定,所使用的粒度分析仪为马尔文ms2000激光粒度仪,其测定条件及检测结果如下表11所示:
[0133]
表11对比例1中的粒度测定数据
[0134][0135]
测定结果显示,本实施例的紫外线吸收剂具有下表12的粒径分布特征,具体分布曲线参见附图6。
[0136]
表12对比例1的紫外线吸收剂粒径分布表
[0137]
[0138][0139]
本对比例中的紫外线吸收剂的α
d5
=0.005,α
d10
=0.122,d[3,2]与d[4,3]的差值为128.616μm。
[0140]
第一溶解实验
[0141]
在本溶解实验中,对上述实施例和对比例中的紫外线吸收剂进行结块程度评价,并将一定质量的样品加入油相中,在常温下(25℃)以150r/min的搅拌速度进行搅拌溶解。其中,本溶解实验针对spf=25的防晒油的制备原料进行试验。其原料如表13所示。
[0142]
表13原料表
[0143][0144]
除了dhhb是固体的以外,其它均为液体油脂。其生产工艺为:将各组分依次加入到油锅中开启搅拌至完全溶清。针对上述原料及工艺,实验室模拟试验结果如下表14所示。
[0145]
表14样品性能测定结果表
[0146][0147]
[0148]
由上表14的数据:
[0149]
结合图7可以看出,在添加浓度为3%,温度为25℃,以150r/min的搅拌速度进行搅拌溶解,本发明实施例1-5提供的dhhb紫外线吸收剂溶解所耗时间均不足5分钟。
[0150]
结合图8-10可以看出,相同溶解条件下,对比例1中的样品在溶解进行5分钟、45分钟后都依然含有明显的未溶dhhb颗粒,最终溶清耗时151分钟。
[0151]
结合对比例1与对比例3可以看出对于dhhb紫外线吸收剂来说,收到实际各种因素影响,其溶解二速度也并非一定符合传统意义上的粒径越小,溶解速度越快的规律。
[0152]
第二溶解实验
[0153]
在本溶解实验中,对上述实施例和对比例中的紫外线吸收剂进行结块程度评价,并将一定质量的样品加入油相中,在常温下(25℃)以150r/min的搅拌速度进行搅拌溶解。其中,本溶解实验针对spf=25的防晒油的制备原料进行试验。其原料如表15所示。
[0154]
表15原料表
[0155][0156]
除了dhhb是固体的以外,其它均为液体油脂。其生产工艺为:将各组分依次加入到油锅中开启搅拌至完全溶清。针对上述原料及工艺,实验室模拟试验结果如下表16所示。
[0157]
表16样品性能测定结果表
[0158][0159][0160]
由表16可以看出:
[0161]
在添加浓度改变至6%,而温度、搅拌速度均同第一溶解实验得条件下,本发明实施例1-5提供的dhhb紫外线吸收剂溶解所耗时间同样均不足5分钟,说明溶解所耗时间并未受到添加浓度的影响。
[0162]
但是,结合表14与表16进行对比可以看出,对比例1中样品溶解所耗时间由151min
增加208min,增幅约为38%;对比例2中样品溶解所耗时间由134min增加202min,增幅约为50%;说明二者溶解所耗时间会受到添加浓度的影响大幅上升。
[0163]
在以往的生产工艺中,研究点多着力于单个环节自身的方法或者设备或者其他方面的优化调解,以达到优化整个生产过程的目的,事实上也取得了一定成效。但是仍有一个比较大的问题制约着生产过程的优化,那就是生产节奏的稳定性,很少有研究者关注这一点。一个节奏稳定的生产过程要求各道工序严格按照一定的节拍进行生产。如果某道工序的生产节拍不稳定,将会影响整个生产过程的顺畅程度,生产的顺畅度不仅仅影响着生产工艺的生产效率,而且还直接影响着生产过程中的产品质量,化妆品领域不顺畅的工艺运行往往直接会引出其他的生产质量问题,且最终影响产品稳定性。
[0164]
如上所示例的,实际利用dhhb颗粒生产防晒产品的过程,涉及多个环节,而第一、第二溶解实验中列举的示意性的模拟试验,仅仅是生产过程中的一个环节,而该环节在所加入的dhhb型号不同、浓度不同时其溶解时间极易发生大的改变,造成生产工艺的稳定性的严重恶化,严重影响生产节拍的稳定性,进而造成产品质量稳定差。
技术特征:
1.一种紫外线吸收剂,其特征在于:所述紫外线吸收剂为2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯,具体结构式如下:所述紫外线吸收剂具有低于100μm的中值粒径d
(0.5)
;所述紫外线吸收剂的最大粒度d
(0.9)
在50~100μm的范围内;同时所述紫外线吸收剂的最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值的范围为30~100μm。2.根据权利要求1所述的紫外线吸收剂,其特征在于:所述最大粒度d
(0.9)
在50~90μm的范围内。3.根据权利要求1所述的紫外线吸收剂,其特征在于:所述最大粒度d
(0.9)
在50~80μm的范围内。4.根据权利要求1所述的紫外线吸收剂,其特征在于:所述最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值的范围为30~70μm。5.根据权利要求1所述的紫外线吸收剂,其特征在于:所述最小粒度d
(0.1)
到最大粒度d
(0.9)
的宽度差值的范围为40~50μm。6.根据权利要求1所述的紫外线吸收剂,其特征在于:所述最小粒度d
(0.1)
在5~15μm的范围内。7.根据权利要求1-6任一所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂具有通过仪器测定的不高于3的有效径距。8.根据权利要求7所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂具有通过仪器测定的、范围为0.5~1.5的一致性。9.根据权利要求7所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂具有通过仪器测定的、范围为0.5~1的一致性。10.根据权利要求7所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂的中值粒径d
(0.5)
在20~40μm的范围内。11.根据权利要求1所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂的粒径分布满足以下要求:其中,
α
d10
为10μm颗粒分布系数;v
d10
为紫外线吸收剂中粒度为10μm以下的颗粒与所述颗粒的总体积比,%;v
d100
为紫外线吸收剂中粒度为100μm以下的颗粒与所述颗粒的总体积比,%;所述紫外线吸收剂的小粒径颗粒分布系数满足α
d10
≤0.2。12.根据权利要求11所述的紫外线吸收剂,其特征在于:所述小粒径颗粒分布系数满足α
d10
≤0.15。13.根据权利要求11所述的紫外线吸收剂,其特征在于:所述小粒径颗粒分布系数满足0.05≤α
d10
≤0.15;优选所述小粒径颗粒分布系数满足0.07≤α
d10
≤0.12。14.根据权利要求11-13任一所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂的v
d100
不低于70%;优选不低于85%,进一步优选不低于95%。15.根据权利要求1-6或者11-13任一所述的紫外线吸收剂,其特征在于:在加工条件下,所述紫外线吸收剂溶于溶剂的时间不高于30分钟;所述加工条件具体如下:溶剂:己二酸二丁酯;添加浓度:3~20wt%;温度:20~30℃;搅拌速度:150
±
5r/min;所述紫外线吸收剂溶于溶剂的指标为溶剂中固含量低于0.5%。16.根据权利要求15所述的紫外线吸收剂,其特征在于:所述紫外线吸收剂溶于溶剂的时间不高于25分钟。17.一种具有紫外线吸收作用的组合物,包括:紫外线吸收剂、分散剂、成膜剂、抗氧化剂及润滑剂;其中,所述紫外线吸收剂包括权利要求1-16任意一项所述的紫外线吸收剂;所述分散剂、成膜剂、抗氧化剂及润滑剂中至少一项在不低于20℃的条件下为油相。18.根据权利要求17所述的具有紫外线吸收作用的组合物,包括:权利要求1-16任意一项所述的紫外线吸收颗粒2-(4-n,n-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯、碳酸二辛酯、己二酸二丁酯、辛酸/癸酸甘油三酯、生育酚乙酸酯。19.权利要求1-16任意一项所述的紫外线吸收剂或权利要求17-18任一所述的组合物作为化妆品防晒组分的应用,或作为织物表面处理的防紫外线添加剂组分的应用,或作为高分子材料的防紫外线添加剂组分的应用。20.一种化妆品,其包括权利要求1-16任意一项所述的紫外线吸收剂;或者其包括权利要求17-18任一所述的组合物作为原料。21.一种化妆品配制工艺,其特征在于:使用权利要求1-16任意一项所述的紫外线吸收剂或权利要求17-18任一所述的组合物作为原料,且将所述原料溶于油相时:温度不高于50℃;优选为40~50℃;添加浓度不高于20wt%;优选为3~20wt%。
技术总结
本发明公开了一种紫外线吸收剂组合物、化妆品,所述紫外线吸收剂为2-(4-N,N-二乙基氨基-2-羟基苯甲酰基)苯甲酸正己基酯;所述紫外线吸收剂的最大粒度d
技术研发人员:刘建军 徐文立 曾诚 吴炜 熊耀东
受保护的技术使用者:黄冈美丰化工科技有限公司
技术研发日:2021.12.28
技术公布日:2022/3/8