1.本发明属于分布式光伏技术领域,具体涉及一种分布式光伏接入配电网运行的调控系统 及方法。
背景技术:
2.光伏产业是新能源产业的重要发展方向之一,光伏市场的发展对优化我国能源结构、促 进能源生产和消费革命、推动能源技术创新等都有重要意义。随着国家对光伏产业的重视以 及光伏项目的开展实施,越来越多的分布式户用光伏电源将接入到农村配电台区当中来。
3.光伏系统并入配电网络后,会对配电网的电压分布、网络损耗和稳态短路巧流产生较大 影响,对于线路上的一点,若该点及后面所有负荷功率总和小于该点及后面所有光伏出力总 和,则设接入点电压升高,反之该接入点电压降低。单个光伏接入后,随着光伏出力的增加, 线路电压变化趋势有3种:逐渐降低、先降低后升高再降低、先升高后降低。后两种情况下 分布式光伏接入点局部电压限制分布式光伏发电接入容量。同等容量光伏发电分散接入对电 化的提升幅度要低于集中接入线路乂端时引起的电压升高幅度,高于集中接入线路前端时引 起的电压升高幅度。由于光伏电源的出力随入射的太阳辖照度而变,可能会造成局部配电线 路的电压波动。虽然目前实际运行的光伏电源并没引起显著的电压波动,但当大量并网光伏 电源接入时,应该对接入位置和接入的容量进行合理管控。
4.基于上述技术问题,现有的公变在线监测终端需要对大量接入的分布式光伏设备进行有 效电压质量监测和管理。目前已经有一些大规模分布式光伏接入地区的台区电压出现问题, 比如白天发电高峰期电网的持续高电压,给用户的用电设备以及电网设备带来极大的安全隐 患。
技术实现要素:
5.为了解决上述问题,本发明提供了一种分布式光伏接入配电网运行的调控系统及方法, 具体技术方案如下:
6.一种分布式光伏接入配电网运行的调控系统,包括
7.安装于光伏发电用户侧的若干个电能质量测量装置、变电站侧的子站和安装于配电网自动化 系统中的分布式电源主站;
8.所述电能质量测量装置与分布式光伏装置连接;所述电能质量测量装置与变电站侧的子站通 过无线通信的方式连接,所述电能质量测量装置用于监测该分布式光伏装置的运行状态,并 通过无线传输的方式将分布式光伏装置的运行状态信息传输至对应的变电站侧的子站;
9.所述变电站侧的子站用于将收集的若干个电能质量测量装置采集的信息进行分析后将信息传 输至配电网自动化系统中的分布式电源主站;
10.所述配电网自动化系统中的分布式电源主站用于对收集到的包括分布式电源主
站的各个台区 的变电站侧的子站采集的电能质量测量装置采集的信息进行处理分析,上传至配电网自动化 调度系统后并根据配电网自动化调度系统的调度信息进行相应的调度。
11.优选地,所述电能质量测量装置通过并网点开关与分布式光伏装置连接,所述电能质量 测量装置通过公共连接点开关分别与配电网、本地负荷连接。
12.优选地,所述电能质量测量装置还包括安装于非分布式光伏装置线路的智能终端,用于 采集该线路的运行状态并将采集的运行状态传输入变电站侧的子站。
13.一种分布式光伏接入配电网运行的调控方法,包括以下步骤:
14.s1:台区内的各电压质量测量装置将各个监测点监测到的分布式光伏装置的运行数据实时传 输至该台区对应的变电站侧的子站;
15.s2:变电站侧的子站将采集到的台区内各个电压质量测量装置监测的数据汇总至分布式电源 主站;
16.s3:分布式电源主站对其对应的分布式光伏装置进行电压质量分析和对其台区的电压质量进 行分析,并根据分析的结果以及预设的电压控制策略对调压装置进行相应的动作,并根据配 电网自动化调度系统的调度信息进行相应的调度。
17.优选地,所述步骤s1中具体包括:将待测的分布式光伏装置从电网中先断开,电压质量 测量装置将监测到的电压数据传输至变电站侧的子站后,再将待测的分布式光伏装置并网, 电压质量测量装置将分布式光伏装置并网后监测到的电压数据传输至变电站侧的子站,以便 主站接收其对应的台区的所有连接至分布式光伏装置侧的电压质量测量装置的并网前后该点 的电压信息,实现对并网前后的并网点的电压质量进行分析,并根据分析结果调节调压装置 或者给出相关的建议实现系统预设的电压控制策略。
18.优选地,所述电压质量分析包括分布式光伏装置并网前后电流总谐波畸变率、电压偏差 率以及电压波动性分析。
19.优选地,所述步骤s3中电压质量分析的具体步骤如下:
20.(1)将电流总谐波畸变率a1、电压偏差率a2、电压波动性a3三个电压质量指标的范围均进 行等级划分;划分为优、良、中、差、不合格五个等级,其中an指标中的每个等级范围分别 用(qn1,qn2,qn3,qn4,qn5表示,n为小于等于3的整数;其中等级qn1至qn5分别为数 字1、2、3、4、5,其表示的电压质量逐级递减;an指标为电流总谐波畸变率、电压偏差率、 电压波动性三个电压质量指标中的一个指标;
21.(2)对三个电压质量指标中每个等级中的范围进行取其中位值,每个中位值即为该指标该等 级的分级标准;从而形成电流总谐波畸变率a1、电压偏差率a2、电压波动性a3三个电压质 量指标的分级标准决策单元dmu1、dmu2、dmu3、dmu4、dmu5;每个分级标准决策单元分别 包含电流总谐波畸变率a1、电压偏差率a2、电压波动性a3这三个评价指标;
22.(3)计算待测节点的电流总谐波畸变率a1、电压偏差率a2、电压波动性a3,并根据待测节 点的电压质量计算结果计算与各个电压等级的匹配度,以匹配度最高的电压等级作为该待测 节点的电压质量等级。
23.优选地,采用数据包络分析法进行计算待测试节点的电压质量等级。
24.优选地,采用欧氏距离计算待测节点的电能质量计算结果与各个电压等级的匹配度,欧 氏距离越小,则对应的匹配度越高。
25.本发明的有益效果为:本发明的系统采用三层结构模式,分别为主站、子站以及终端电 压质量测量装置,主站安装于配电自动化系统中,子站安装于变电站中。电压质量检测装置 安装于光伏发电用户的并网点,用于采集并网点的电压信号,通过统一的数据接入标准和数 据模型,将需要监测的电压质量信息通过收集,并发送至子站中。子站通过电压质量分析方 法获得该台区各个线路的电压质量等级,并将该电压质量等级传输至主站,为主站进行电压 质量改造提供数据参照。
26.本发明中对待检测节点的电压质量进行评级,根据电压质量的等级可以初步判断该待检 测节点所在的线路是否可以进行安装光伏;或者对已经安装光伏的待检测节点进行相应的电 压质量调节。
27.本发明在分布式光伏装置信号发射故障或者检测到电压故障,可以快速定位到故障发生 点,有利于今后分布式电源的故障检修和管理工作;同时在分布式电源管理主站可以负责进 行全网的优化调度命令,当分布式电源不发电时,亦可作为一个无功控制调节的装置,调节 整个线路的无功分布,达到线路的降损和优化。
附图说明
28.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方 式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一 般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
29.图1为本发明的系统结构示意图。
30.图2为光伏发电系统结构图。
具体实施方式
31.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的 实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本发明保护的范围。
32.应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示 所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、 整体、步骤、操作、元素、组件和/或其集合的存在或添加。
33.还应当理解,在本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不 意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地 指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
34.还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相 关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
35.如图1所示,本发明的具体实施方式提供了一种分布式光伏接入配电网运行的调控系统, 包括
36.安装于光伏发电用户侧的若干个电能质量测量装置、变电站侧的子站和安装于配电网自动化 系统中的分布式电源主站;
qn5分别为数字1、2、3、4、5,其表示的电压质量逐级递减;qn1的范围为根据国家标准制 定的范围规定的该指标对应的范围;an指标为电流总谐波畸变率、电压偏差率电压波动性 三个电压质量指标中的一个指标;表1为电压质量等级划分标准:
47.表1电压质量等级划分标准
[0048][0049]
(2)对三个电压质量指标中每个等级中的范围进行取其中位值,每个中位值即为该指标该等 级的分级标准;从而形成电流总谐波畸变率a1、电压偏差率a2、电压波动性a3三个电压质 量指标的分级标准决策单元dmu1、dmu2、dmu3、dmu4、dmu5;每个分级标准决策单元分别 包含电流总谐波畸变率a1、电压偏差率a2、电压波动性a3这三个评价指标;如下表2所示:
[0050]
表2电压质量分级标准
[0051]
dmudmu1dmu2dmu3dmu4dmu5a10.050.300.650.850.90a20.602.103.755.757.00a30.100.350.650.901.00q12345
[0052]
(3)计算待测节点的电流总谐波畸变率a1、电压偏差率a2、电压波动性a3,并根据待测节 点的电压质量计算结果计算与各个电压等级的匹配度,以匹配度最高的电压等级作为该待测 节点的电压质量等级。采用欧氏距离计算待测节点的电能质量计算结果与各个电压等级的匹 配度,欧氏距离越小,则对应的匹配度越高。具体计算方式如下:
[0053][0054]
其中,aj为计算得到的第j个评价指标,分别为电流总谐波畸变率a1、电压偏差率a2、电 压波动性a3,a
ij
为第i个分级标准决策单元dmu中的第j个评价指标。
[0055]
其中具体是采用数据包络分析法进行计算待测试节点的电压质量等级,具体为:将m个 待检测节点的与电压质量等级(1,2,3,4,5)结合形成m*5个待检测的决策单元dmu;以电 流总谐波畸变率、电压偏差率、电压波动性为输入的特征参数,以电压质量等级值作为输出, 采用dac算法对bcc模型进行求解计算出m*5个决策单元,与5个分级标准决策单元的效率 值;对待检测节点的决策单元dmu的效率值分别与分级标准决策单元dmu1、dmu2、dmu3、dmu4、 dmu5的效率值比较做差作为比较度,取比较度最小的对应的等级作为该待测节点的评估等级; 待检测节点dmu有效值与五个标准决策单元越接近,说明该dmu输入与输出指标相似度越 高,就归为该标准等级;从而得到最终的电压质量分级评估结果,得出待
检测节点的电压质 量等级;
[0056]
其中采用dac算法对bcc模型进行求解计算出各个决策单元的效率值具体包括:
[0057]
s31:采用c2r模型建立m维输入,s维输出的线性方程,具体为:
[0058][0059]
其中,θ为当前决策单元基于标准决策单元的相对效率指数;为元素均为1的 m维向量,是元素均为1的s维向量,s为每个单元输出量的个数;xj和yj分别表 示第j个决策单元的输入和输出。
[0060]
s-=(s
1-,s
2-,
…
,s
m-)
t
为m项输入的剩余变量,s
+
=(s
1+
,s
2+
,
…
,s
m+
)
t
为松弛变量,λj为该决策 单元的权重,ε表示非阿基米德无穷小量;
[0061]
s32:基于约束条件求解出模型的最优解的相对效率值θ0。
[0062]
如图2所示,光伏发电系统由若干个太阳能电池板和汇流箱,多个逆变器组成。经隔离 变压器、0升压变压器接入变电所,如图2所示。电压质量测量装置安装与并网点和公共连 接点之间,用于监测公共连接点或并网点处电压质量参数,测试时,将待测试的光伏装置采 集其并网前后的电流总谐波畸变率、电压偏差率以及电压波动性的分析,如果均为较差,这 判断该光伏设备不能接入电网中。在平时使用时,电压质量测试装置又能作为配电网电压监 测装置进行电压质量监控。
[0063]
反应电压质量的指标很多,根据我国颁布的一系列电压质量国家标准,并考虑光伏接入 电路的复杂性以及电压暂降和供电可靠性这两个指标,确定电压质量、频率质量、供电可靠 性这三个方面,选取了其中的电流总谐波畸变率、电压偏差率、电压波动性三个指标作为分 布式光伏接入配电网的评价指标,本发明采用数据包络分析法对待检测节点的电压进行划分 等级,并将评价出的等级传输至主站。
[0064]
基于数据包络分析法,对检测节点的电压质量决策单元与分级标准的决策单元的效率值 进行比对,待评估的电压质量决策单元有效值与五个标准决策单元越接近,说明该dmu输入 与输出指标相似度越高,就归为该标准等级,从而实现最终的电压质量分级评估。
[0065]
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能 够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一般性地描述了各示例的组成。这些功能究竟以硬件还是软件方 式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应 用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
[0066]
在本技术所提供的实施例中,应该理解到,单元的划分,仅仅为一种逻辑功能划
分,实 际实现时可以有另外的划分方式,例如多个单元可结合为一个单元,一个单元可拆分为多个 单元,或一些特征可以忽略等。
[0067]
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前 述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前 述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其 均应涵盖在本发明的权利要求和说明书的范围当中。
技术特征:
1.一种分布式光伏接入配电网运行的调控系统,其特征在于:包括安装于光伏发电用户侧的若干个电能质量测量装置、变电站侧的子站和安装于配电网自动化系统中的分布式电源主站;所述电能质量测量装置与分布式光伏装置连接;所述电能质量测量装置与变电站侧的子站通过无线通信的方式连接,所述电能质量测量装置用于监测该分布式光伏装置的运行状态,并通过无线传输的方式将分布式光伏装置的运行状态信息传输至对应的变电站侧的子站;所述变电站侧的子站用于将收集的若干个电能质量测量装置采集的信息进行分析后将信息传输至配电网自动化系统中的分布式电源主站;所述配电网自动化系统中的分布式电源主站用于对收集到的包括分布式电源主站的各个台区的变电站侧的子站采集的电能质量测量装置采集的信息进行处理分析,上传至配电网自动化调度系统后并根据配电网自动化调度系统的调度信息进行相应的调度。2.根据权利要求1所述的一种分布式光伏接入配电网运行的调控系统,其特征在于:所述电能质量测量装置通过并网点开关与分布式光伏装置连接,所述电能质量测量装置通过公共连接点开关分别与配电网、本地负荷连接。3.根据权利要求1所述的一种分布式光伏接入配电网运行的调控系统,其特征在于:所述电能质量测量装置还包括安装于非分布式光伏装置线路的智能终端,用于采集该线路的运行状态并将采集的运行状态传输入变电站侧的子站。4.一种分布式光伏接入配电网运行的调控方法,其特征在于:包括以下步骤:s1:台区内的各电压质量测量装置将各个监测点监测到的分布式光伏装置的运行数据实时传输至该台区对应的变电站侧的子站;s2:变电站侧的子站将采集到的台区内各个电压质量测量装置监测的数据汇总至分布式电源主站;s3:分布式电源主站对其对应的分布式光伏装置进行电压质量分析和对其台区的电压质量进行分析,并根据分析的结果以及预设的电压控制策略对调压装置进行相应的动作,并根据配电网自动化调度系统的调度信息进行相应的调度。5.根据权利要求4所述的一种分布式光伏接入配电网运行的调控方法,其特征在于:所述步骤s1中具体包括:将待测的分布式光伏装置从电网中先断开,电压质量测量装置将监测到的电压数据传输至变电站侧的子站后,再将待测的分布式光伏装置并网,电压质量测量装置将分布式光伏装置并网后监测到的电压数据传输至变电站侧的子站,以便主站接收其对应的台区的所有连接至分布式光伏装置侧的电压质量测量装置的并网前后该点的电压信息,实现对并网前后的并网点的电压质量进行分析,并根据分析结果调节调压装置或者给出相关的建议实现系统预设的电压控制策略。6.根据权利要求5所述的一种分布式光伏接入配电网运行的调控方法,其特征在于:所述电压质量分析包括分布式光伏装置并网前后电流总谐波畸变率、电压偏差率以及电压波动性分析。7.根据权利要求6所述的一种分布式光伏接入配电网运行的调控方法,其特征在于:所述步骤s3中电压质量分析的具体步骤如下:(1)将电流总谐波畸变率a1、电压偏差率a2、电压波动性a3三个电压质量指标的范围均
进行等级划分;划分为优、良、中、差、不合格五个等级,其中an指标中的每个等级范围分别用(qn1,qn2,qn3,qn4,qn5 表示,n为小于等于3的整数;其中等级 qn1至qn5分别为数字1、2、3、4、5,其表示的电压质量逐级递减; an指标为电流总谐波畸变率、电压偏差率、电压波动性三个电压质量指标中的一个指标;(2)对三个电压质量指标中每个等级中的范围进行取其中位值,每个中位值即为该指标该等级的分级标准;从而形成电流总谐波畸变率a1、电压偏差率a2、电压波动性a3三个电压质量指标的分级标准决策单元dmu1、dmu2、dmu3、 dmu4、dmu5;每个分级标准决策单元分别包含电流总谐波畸变率a1、电压偏差率a2、电压波动性a3这三个评价指标;(3)计算待测节点的电流总谐波畸变率a1、电压偏差率a2、电压波动性a3,并根据待测节点的电压质量计算结果计算与各个电压等级的匹配度,以匹配度最高的电压等级作为该待测节点的电压质量等级。8.根据权利要求7所述的一种分布式光伏接入配电网运行的调控方法,其特征在于:采用数据包络分析法进行计算待测试节点的电压质量等级。9.根据权利要求7所述的一种分布式光伏接入配电网运行的调控方法,其特征在于:采用欧氏距离计算待测节点的电能质量计算结果与各个电压等级的匹配度,欧氏距离越小,则对应的匹配度越高。
技术总结
本发明属于分布式光伏技术领域,具体涉及一种分布式光伏接入配电网运行的调控系统及方法。本发明的系统采用三层结构模式,分别为主站、子站以及终端电压质量测量装置,电压质量检测装置安装于光伏发电用户的并网点,用于采集并网点的电压信号,通过统一的数据接入标准和数据模型,将需要监测的电压质量信息通过收集,并发送至子站中。子站通过电压质量分析方法获得该台区各个线路的电压质量等级,并将该电压质量等级传输至主站,为主站进行电压质量改造提供数据参照。本发明对待检测节点的电压质量进行评级,根据电压质量的等级可以初步判断该待检测节点所在的线路是否可以进行安装光伏;或者对已经安装光伏的待检测节点进行相应的电压质量调节。相应的电压质量调节。相应的电压质量调节。
技术研发人员:姚知洋 陈卫东 卢健斌 阮诗雅 龚文兰 郭敏 韩帅 金庆忍 孙乐平 吴晓锐
受保护的技术使用者:广西电网有限责任公司电力科学研究院
技术研发日:2021.11.27
技术公布日:2022/3/8