1.本发明属于金属材料技术领域,具体涉及一种大厚度低温压力容器用钢板及其制造方法,尤其是指心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板及其制造方法。
背景技术:
2.随着我国经济的快速发展,各行业对能源需求越来越大,迫切需要建设各种大型储能、储气压力容器,例如石油、化工、发电行业的反应器、换热器、分离器、球罐、油气罐、锅炉汽包等。通常这些大型压力容器设施在低温、高压等苛刻环境下服役,因此要求钢材具有较高的强度和良好的低温韧性。
3.为了保证大型压力容器的安全性和稳定性,制造大型压力容器用的钢板除了要求厚度1/4位置的强度和低温韧性满足标准要求外,还要求厚度1/2心部位置也具有较高的强度和良好的低温韧性。而在实际过程中,由于元素分配系数不同及受凝固顺序的影响,造成连铸坯心部位置存在中心偏析、中心疏松等固有缺陷。在轧钢过程中,变形始于板坯表面,变形量较小时变形集中在板坯表面,随着变形量的增大,变形才会逐渐向心部渗透。轧制大厚度压力容器用钢板时,由于变形量小、压缩比不足,钢板心部位置往往无法充分变形、再结晶,从而造成心部位置组织相对粗大。由于钢板心部位置存在中心偏析、中心疏松等固有缺陷,且组织相对粗大,因此,大厚度钢板普遍存在厚度1/2心部位置低温韧性不稳定问题,及ndt性能合格率低等难题。
4.对比文件1,一种调质高强压力容器07mnnimodr及其生产方法(申请号:cn 109487041a),采取的方法包括:kr预处理、转炉冶炼、lf精炼、真空精炼、浇注、铸坯加热、轧制、缓冷、热处理工艺,通过合理的成分设计,lf+vd工艺来保证钢质的洁净度,并通过加热、轧制及热处理调质等工艺有效实施,生产的钢板性能满足厚度1/2位置-50℃横向冲击功控制在120-160j。在转炉冶炼过程中,要求出钢p≤0.006%,控制范围极窄,在实际生产中是无法满足无法控制的,批量生产基本难度极大,且控制成本很高。模拟焊后热处理pwht后仅厚度1/4位置-50℃冲击功能满足要求。此外,该发明采用钢锭方式生产,其切损量很大、成材率很低,生产方式不经济。
5.对比文件2,一种球罐用07mnnimodr钢板及生产方法(申请号:cn111778451a),通过采用少量nb、ni合金元素,生产工艺采用离线淬火+回火工艺,生产钢板满足产品性能和对ndt的要求。该专利仅调质交货态钢板满足ndt转变温度-50℃的要求,模拟焊后热处理pwht后能否满足ndt
ꢀ‑
50℃合格属于未知,该专利也未从根本上揭示出化学成分及生产工艺对ndt根本性及规律性影响因素,对实际生产指导性不足。另外,该专利所涉及的钢板厚度规格仅为40~50mm。
技术实现要素:
6.本发明的目的在于提供一种大厚度低温压力容器用钢板及其制造方法,采用厚度
375mm以上特厚优质连铸坯,生产厚度48~60mm特别是55~60mm的大厚度低温压力容器用钢板,调质交货态及模拟焊后热处理pwht,拉伸、冷弯等力学性能良好,厚度1/2的心部位置-50℃冲击功≥100j,ndt转变温度≤-50℃。
7.本文明是通过如下技术方案实现的:一种大厚度低温压力容器用钢板,其特征在于:包括如下重量百分比的各组分:c:0.040-0.100%;si:0.15-0.40%;mn:1.30-1.45%;p:≤0.010%;s:≤0.002%;mo:0.10-0.30%;ni:0.30-0.60%;cu:0.02-0.20%;nb:0.010-0.040%;v:0.010-0.040%;ti:0.005-0.018%;als:0.015-0.050%;n:≤0.0040%;h:≤0.00015%;b:≤0.0012%,其余为fe及不可避免杂质,各元素含量同时满足: tc=220c+135nb+159v+337.5ti+770p-50cu-10ni-88.7≤-66。
8.本发明还公开了一种大厚度低温压力容器用钢板的制造方法,包括冶炼步骤、轧制步骤、调质步骤;其特征在于:冶炼步骤中,采用p≤0.100%的低磷铁水冶炼,废钢选用板边板头,辅料选用优质石灰,lf精炼白渣操作,rh炉的真空度≤50pa,高真空处理时间为15min以上,连铸步骤中投入电磁搅拌和重压下,重压下的压下量15~25mm,拉速0.4~0.6m/min,中间包钢水过热度控制在≤25℃,最终获得厚度375mm以上特厚优质连铸坯;轧制步骤中,轧制总压缩比≥6.0,加热温度控制在1180~1250℃,加热速度1.10~1.50mm/min,分两阶段轧制,在第一阶段轧制前开启高压除鳞水打水降温,连铸坯表面温度降低至930~950℃后开始轧制,第一阶段轧制温度≥930℃,总压下率≥68%,轧制速度≤2.5m/s,末三道次中至少有两道单道次压下率≥17%。中间坯待温厚度控制在成品厚度的2.0倍以上,第二阶段轧制温度控制在870~780℃之间,第二阶段总压下率在≥50%;采用ufc超快冷模式冷却,入水温度800℃~820℃,终冷温度580℃~650℃,冷速5~12℃/s,钢板矫直温度600℃~680℃;调质步骤中,对钢板进行离线调质处理,其中淬火奥氏体化温度为880~900℃、加热速度1.5~2.0min/mm,淬火介质为水,回火加热温度590~620℃、加热速度3.0~4.0min/mm,钢板出炉后在空气中自然冷却至室温。
9.优选的:模拟焊后热处理pwht步骤中:入炉温度≤400℃,温度大于400℃升温速度50~80℃/h,降温速度30~50℃/h,560~590℃保温4~6h,降温至400℃以后自然冷却。
10.本发明的优点在于:(1)通过严格控制有害元素含量、适量加入nb、v、ti、ni、cu、mo等化学元素,各元素含量同时满足:tc=220c+135nb+159v+337.5ti+770p-50cu-10ni-88.7≤-66(式中为各元素百分比含量),采用375mm以上特厚优质连铸坯,轧制总压缩比≥6.0,并按照给定的加热、轧制工艺及热处理工艺制造的厚度48~60mm低温压力容器用钢板力学性能稳定且厚度方向性能均匀,具有较高的强度和良好的低温韧性。
11.(2)经模拟焊后热处理pwht后,拉伸、冷弯等力学性能良好,厚度1/2的心部位置-50℃冲击功≥100j,ndt转变温度≤-50℃,满足低温、高压等苛刻服役环境要求,同时钢板内部质量良好,具备批量工业生产条件。
具体实施方式
12.本发明公开了一种大厚度低温压力容器用钢板,包括如下重量百分比的各组分:
c:0.040-0.100%;si:0.15-0.40%;mn:1.30-1.45%;p:≤0.010%;s:≤0.002%;mo:0.10-0.30%;ni:0.30-0.60%;cu:0.02-0.20%;nb:0.010-0.040%;v:0.010-0.040%;ti:0.005-0.018%;als:0.015-0.050%;n:≤0.0040%;h:≤0.00015%;b:≤0.0012%,其余为fe及不可避免杂质,各元素含量同时满足:tc=220c+135nb+159v+337.5ti+770p-50cu-10ni-88.7≤-66(式中元素符号代表各元素百分比含量的数值,如当c含量为0.100%时,公式中c代表0.100)。
13.本发明还公开了一种大厚度低温压力容器用钢板的制造方法,包括铁水预处理
→
转炉
→
lf精炼
→
rh处理
→
连铸
→
连铸坯加热
→
粗轧
→
精轧
→
超快冷
→
矫直
→
堆垛缓冷
→
火切
→
淬火
→
回火
→
模拟焊后热处理
→
探伤
→
取样
→
力学性能检验
→
仓储及发货等步骤:其中,冶炼步骤中,采用p≤0.100%的低磷铁水冶炼,废钢选用板边板头,辅料选用优质石灰,lf精炼白渣操作,rh炉的真空度≤50pa,高真空处理时间为15min以上,连铸步骤中投入电磁搅拌和重压下,重压下的压下量15~25mm,拉速0.4~0.6m/min,中间包钢水过热度控制在≤25℃,最终获得厚度375mm以上特厚优质连铸坯;轧制步骤中,轧制总压缩比≥6.0,加热温度控制在1180~1250℃,加热速度1.10~1.50mm/min,分两阶段轧制,在第一阶段轧制前开启高压除鳞水打水降温,连铸坯表面温度降低至930~950℃后开始轧制,第一阶段轧制温度≥930℃,总压下率≥68%,轧制速度≤2.5m/s,末三道次中至少有两道单道次压下率≥17%。中间坯待温厚度控制在成品厚度的2.0倍以上,第二阶段轧制温度控制在870~780℃之间,第二阶段总压下率在≥50%;采用ufc超快冷模式冷却,入水温度800℃~820℃,终冷温度580℃~650℃,冷速5~12℃/s,钢板矫直温度600℃~680℃;调质步骤中,对钢板进行离线调质处理,其中淬火奥氏体化温度为880~900℃、加热速度1.5~2.0min/mm,淬火介质为水,回火加热温度590~620℃、加热速度3.0~4.0min/mm,钢板出炉后在空气中自然冷却至室温。
14.优选的:模拟焊后热处理pwht步骤中:入炉温度≤400℃,温度大于400℃升温速度50~80℃/h,降温速度30~50℃/h,560~590℃保温4~6h,降温至400℃以后自然冷却。
15.下面通过实施例对本发明做进一步验证说明。详见实施例1-12,其中实施例7-12为对比例,旨在说明tc含量对整个体系的重要性。
16.实施例1:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.051%;si:0.22%;mn:1.43%;p: 0.007%;s: 0.0005%;mo:0.17%;ni:0.35%;cu:0.02%;nb:0.016%;v:0.018%;ti:0.011%;als:0.026%;n:0.0035%;h:0.00013%;b:0.0003%,其余为fe及不可避免杂质,tc=220
×
0.051+135
×
0.016+159
×
0.018+337.5
×
0.011+770
×
0.007-50
×
0.02-10
×
0.35-88.7=-67.85,-67.85<-66。
17.本实施例所述大厚度低温压力容器用钢板的生产过程包括:冶炼过程中,采用低磷铁水冶炼,废钢选用板边板头,辅料选用优质石灰,lf精炼白渣操作,rh炉的真空度≤50pa,高真空处理时间为15min以上,连铸过程中投入电磁搅拌和重压下,重压下的压下量15~25mm,拉速0.4~0.6m/min,中间包钢水过热度控制在≤25℃,最终获得厚度375mm以上特厚优质连铸坯;
轧制过程中,轧制总压缩比≥6.0,加热温度控制在1180~1250℃,加热速度1.10~1.50mm/min,分两阶段轧制,在第一阶段轧制前开启高压除鳞水打水降温,连铸坯表面温度降低至930~950℃后开始轧制,第一阶段轧制温度≥930℃,总压下率≥68%,轧制速度≤2.5m/s,末三道次中至少有两道单道次压下率≥17%。中间坯待温厚度控制在成品厚度的2.0倍以上,第二阶段轧制温度控制在870~780℃之间,第二阶段总压下率在≥50%。采用ufc超快冷模式冷却,入水温度800℃~820℃,终冷温度580℃~650℃,冷速5~12℃/s,钢板矫直温度600℃~680℃;对钢板进行离线调质处理,其中淬火奥氏体化温度为880~900℃、加热速度1.5~2.0min/mm,淬火介质为水,回火加热温度590~620℃、加热速度3.0~4.0min/mm,钢板出炉后在空气中自然冷却至室温。
18.模拟焊后热处理pwht工艺要求:入炉温度≤400℃,温度大于400℃升温速度50~80℃/h,降温速度30~50℃/h,560~590℃保温4~6h,降温至400℃以后自然冷却。
19.通过上述工艺过程,所生产的大厚度低温压力容器用钢板,力学性能稳定且厚度方向性能均匀,具有较高的强度和良好的低温韧性,满足低温、高压等苛刻服役环境要求,同时钢板内部质量良好,探伤结果满足“nb/t47013.3-2015、ⅰ级”标准要求。调质态钢板厚度方向1/4处力学性能:520mpa≤rel(下屈服强度)≤570mpa、620mpa≤rm(抗拉强度)≤660mpa、25.0%≤a(断后伸长率)≤28.0%、冷弯合格、1/4厚250j≤-50℃ akv(-50℃冲击值)≤350j;厚度1/2的心部位置200j≤-50℃ akv(-50℃冲击值)≤300j,ndt转变温度≤-50℃。模拟焊后热处理pwht后,经检验,钢板拉伸、冷弯等力学性能良好,厚度1/2的心部位置-50℃冲击功≥100j,ndt转变温度≤-50℃。
20.实施例2:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.053%;si:0.25%;mn:1.42%;p: 0.006%;s:≤0.0008%;mo:0.18%;ni:0.37%;cu:0.02%;nb:0.018%;v:0.019%;ti:0.012%;als:0.029%;n:0.0038%;h:0.00012%;b:0.0002%,其余为fe及不可避免杂质,tc=220
×
0.053+135
×
0.018+159
×
0.019+337.5
×
0.012+770
×
0.006-50
×
0.02-10
×
0.37-88.7=-67.62,-67.62<-66。
21.实施例3:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.055%;si:0.28%;mn:1.41%;p: 0.007%;s: 0.0012%;mo:0.19%;ni:0.43%;cu:0.02%;nb:0.017%;v:0.016%;ti:0.008%;als:0.032%;n:0.0039%;h:0.00012%;b:0.0003%,其余为fe及不可避免杂质,tc=220
×
0.055+135
×
0.017+159
×
0.016+337.5
×
0.008+770
×
0.007-50
×
0.02-10
×
0.43-88.7=-68.97,-68.97<-66。
22.实施例4:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.072%;si:0.29%;mn:1.41%;p: 0.008%;s: 0.0013%;mo:0.16%;ni:0.38%;cu:0.15%;nb:0.019%;v:0.021%;ti:0.013%;als:0.035%;n:0.0032%;h:0.00013%;b:0.0007%,其余为fe及不可避免杂质,tc=220
×
0.072+135
×
0.019+159
×
0.021+337.5
×
0.013+770
×
0.008-50
×
0.15-10
×
0.38-88.7=-67.71,-67.71<-66。
23.实施例5:
本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.075%;si:0.22%;mn:1.43%;p: 0.008%;s: 0.0011%;mo:0.18%;ni:0.41%;cu:0.16%;nb:0.018%;v:0.019%;ti:0.012%;als:0.031%;n:0.0036%;h:0.00011%;b:0.0007%,其余为fe及不可避免杂质,tc=220
×
0.075+135
×
0.018+159
×
0.019+337.5
×
0.012+770
×
0.009-50
×
0.16-10
×
0.41-88.7=-67.87,-67.87<-66。
24.实施例6:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.087%;si:0.26%;mn:1.40%;p: 0.009%;s:0.0010%;mo:0.19%;ni:0.52%;cu:0.18%;nb:0.016%;v:0.018%;ti:0.009%;als:0.028%;n:0.0039%;h:0.00014%;b:0.0008%,其余为fe及不可避免杂质,tc=220
×
0.087+135
×
0.016+159
×
0.018+337.5
×
0.009+770
×
0.009-50
×
0.18-10
×
0.52-88.7=-68.77,-68.77<-66。
25.实施例7:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.057%;si:0.25%;mn:1.39%;p: 0.010%;s: 0.0012%;mo:0.17%;ni:0.35%;cu:0.02%;nb:0.017%;v:0.017%;ti:0.011%;als:0.029%;n:0.0032%;h:0.00011%;b:0.0004%,其余为fe及不可避免杂质,tc=220
×
0.057+135
×
0.017+159
×
0.017+337.5
×
0.011+770
×
0.010-50
×
0.02-10
×
0.35-88.7=-64.25,-64.25>-66。
26.实施例8:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.052%;si:0.28%;mn:1.40%;p: 0.007%;s: 0.0014%;mo:0.18%;ni:0.33%;cu:0.02%;nb:0.023%;v:0.022%;ti:0.016%;als:0.026%;n:0.0035%;h:0.00012%;b:0.0004%,其余为fe及不可避免杂质,tc=220
×
0.052+135
×
0.023+159
×
0.022+337.5
×
0.016+770
×
0.007-50
×
0.02-10
×
0.33-88.7=-64.17,-64.17>-66。
27.实施例9:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.062%;si:0.23%;mn:1.42%;p: 0.008%;s: 0.0009%;mo:0.19%;ni:0.31%;cu:0.02%;nb:0.018%;v:0.016%;ti:0.011%;als:0.027%;n:0.0031%;h:0.00013%;b:0.0003%,其余为fe及不可避免杂质,tc=220
×
0.062+135
×
0.018+159
×
0.016+337.5
×
0.011+770
×
0.008-50
×
0.02-10
×
0.31-88.7=-64.31,-64.31>-66。
28.实施例10:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.079%;si:0.22%;mn:1.41%;p: 0.009%;s: 0.0008%;mo:0.17%;ni:0.35%;cu:0.16%;nb:0.019%;v:0.028%;ti:0.017%;als:0.031%;n:0.0032%;h:0.00012%;b:0.0008%,其余为fe及不可避免杂质,tc=220
×
0.079+135
×
0.019+159
×
0.028+337.5
×
0.017+770
×
0.009-50
×
0.16-10
×
0.35-88.7=-63.14,-63.14>-66。
29.实施例11:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.085%;si:0.23%;mn:1.39%;p: 0.007%;s: 0.0012%;mo:0.18%;ni:0.36%;cu:0.15%;nb:0.026%;v:0.019%;ti:0.014%;als:0.033%;n:
0.0036%;h:0.00011%;b:0.0008%,其余为fe及不可避免杂质,tc=220
×
0.085+135
×
0.026+159
×
0.019+337.5
×
0.014+770
×
0.007-50
×
0.15-10
×
0.36-88.7=-64.45,-64.45>-66。
30.实施例12:本实施例提供的一种心部冲击韧性良好ndt≤-50℃的大厚度低温压力容器用钢板,其化学成分及质量百分比如下:c:0.096%;si:0.27%;mn:1.38%;p: 0.007%;s: 0.0013%;mo:0.16%;ni:0.45%;cu:0.14%;nb:0.018%;v:0.018%;ti:0.014%;als:0.032%;n:0.0033%;h:0.00013%;b:0.0007%,其余为fe及不可避免杂质,tc=220
×
0.096+135
×
0.018+159
×
0.018+337.5
×
0.012+770
×
0.007-50
×
0.14-10
×
0.45-88.7=-64.35,-64.35>-66。
31.对实施例1~实施例12产品进行交货状态性能检测(调质态),性能检验结果如表1所示。
32.表1交货态力学性能(调质态)对实施例1~实施例12产品按照575℃保温6h的工艺,进行模拟焊后热处理pwht,并进行性能检测,性能检验结果如表2所示。
33.表2交货态力学性能(pwht)
由表1和表2可以看出,按照本发明方法,通过精确控制c、p、nb、v、ti、cu、ni等元素含量,满足tc≤-66钢板的交货状态性能合格,其中厚度1/4位置-50℃冲击功309~335j、厚度1/2位置-50℃冲击功251~289j、-50℃ndt完好,模拟焊后热处理pwht性能也都合格,其中厚度1/4位置-50℃冲击功295~338j、厚度1/2位置-50℃冲击功202~285j、-50℃ndt完好。而tc>-66钢板的交货状态性能都不合格,其中厚度1/4位置-50℃冲击功258~281j、厚度1/2位置-50℃冲击功68~128j、-50℃ndt不合格,模拟焊后热处理pwht性能也不合格,其中厚度1/4位置-50℃冲击功205~268j、厚度1/2位置-50℃冲击功60~95j、-50℃ndt不合格。
34.对钢板按照nb/t47013.3-2015方法进行了超声波探伤检验,探伤结果均满足ⅰ级标准的要求,表明钢板内部质量良好。
35.综上所述, 本发明通过严格控制冶炼过程,连铸机重压下的压下量15~25mm,拉速0.4~0.6m/min,控制连铸中间包过热度≤25℃,获得375mm以上大厚度特厚优质连铸坯,精准控制c、p、nb、v、ti、cu、ni等元素含量,满足tc=220c+135nb+159v+337.5ti+770p-50cu-10ni-88.7≤-66,轧制总压缩比≥6.0,控制铸坯均热温度1180~1250℃,分两阶段轧制,在第一阶段轧制前开启高压除鳞水打水降温,连铸坯表面温度降低至930~950℃后开始轧制,第一阶段轧制温度≥930℃,总压下率≥68%,轧制速度≤2.5m/s,末三道次中至少有两道单道次压下率≥17%。中间坯待温厚度控制在成品厚度的2.0倍以上,第二阶段轧制温度控制在870~780℃之间,淬火奥氏体化温度为880~900℃、回火温度590~620℃。以此方法生产,获得的48~60mm大厚度≥490mpa级低温压力容器用钢板各项性能合格,调质交货态及焊后热处理态均满足厚度1/2的心部位置-50℃冲击功≥100j,ndt转变温度≤-50℃。
36.以上实例仅是对本发明最佳实施方式的描述,不对本发明的范围有任何限制。
技术特征:
1.一种大厚度低温压力容器用钢板,其特征在于:包括如下重量百分比的各组分:c:0.040-0.100%;si:0.15-0.40%;mn:1.30-1.45%;p:≤0.010%;s:≤0.002%;mo:0.10-0.30%;ni:0.30-0.60%;cu:0.02-0.20%;nb:0.010-0.040%;v:0.010-0.040%;ti:0.005-0.018%;als:0.015-0.050%;n:≤0.0040%;h:≤0.00015%;b:≤0.0012%,其余为fe及不可避免杂质,各元素含量同时满足: tc=220c+135nb+159v+337.5ti+770p-50cu-10ni-88.7≤-66。2.一种大厚度低温压力容器用钢板的制造方法,包括冶炼步骤、轧制步骤、调质步骤;其特征在于:冶炼步骤中,采用p≤0.100%的低磷铁水冶炼,废钢选用板边板头,辅料选用优质石灰,lf精炼白渣操作,rh炉的真空度≤50pa,高真空处理时间为15min以上,连铸步骤中投入电磁搅拌和重压下,重压下的压下量15~25mm,拉速0.4~0.6m/min,中间包钢水过热度控制在≤25℃,最终获得厚度375mm以上特厚优质连铸坯;轧制步骤中,轧制总压缩比≥6.0,加热温度控制在1180~1250℃,加热速度1.10~1.50mm/min,分两阶段轧制,在第一阶段轧制前开启高压除鳞水打水降温,连铸坯表面温度降低至930~950℃后开始轧制,第一阶段轧制温度≥930℃,总压下率≥68%,轧制速度≤2.5m/s,末三道次中至少有两道单道次压下率≥17%;中间坯待温厚度控制在成品厚度的2.0倍以上,第二阶段轧制温度控制在870~780℃之间,第二阶段总压下率在≥50%;采用ufc超快冷模式冷却,入水温度800℃~820℃,终冷温度580℃~650℃,冷速5~12℃/s,钢板矫直温度600℃~680℃;调质步骤中,对钢板进行离线调质处理,其中淬火奥氏体化温度为880~900℃、加热速度1.5~2.0min/mm,淬火介质为水,回火加热温度590~620℃、加热速度3.0~4.0min/mm,钢板出炉后在空气中自然冷却至室温。3.根据权利要求2所述的制造方法,其特征在于:模拟焊后热处理pwht步骤中:入炉温度≤400℃,温度大于400℃升温速度50~80℃/h,降温速度30~50℃/h,560~590℃保温4~6h,降温至400℃以后自然冷却。
技术总结
本发明公开了一种大厚度低温压力容器用钢板及其制造方法,所述钢板包括:C:0.040-0.100%;Si:0.15-0.40%;Mn:1.30-1.45%;P:≤0.010%;S:≤0.002%;Mo:0.10-0.30%;Ni:0.30-0.60%;Cu:0.02-0.20%;Nb:0.010-0.040%;V:0.010-0.040%;Ti:0.005-0.018%;Als:0.015-0.050%;N:≤0.0040%;H:≤0.00015%;B:≤0.0012%,其余为Fe;且Tc≤-66。本发明钢板满足低温、高压等苛刻服役环境要求,同时钢板内部质量良好,具备批量工业生产条件。具备批量工业生产条件。
技术研发人员:刘振华 王东明 杨海峰 王川 曲之国 张友健 郝文强 胡高鹏 祁敏翔 张德勇
受保护的技术使用者:日钢营口中板有限公司
技术研发日:2021.11.28
技术公布日:2022/3/8